Browsing by Author "Humayun, Ahmad"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Co-dependence Aware Fuzzing for Dataflow-Based Big Data AnalyticsHumayun, Ahmad; Kim, Miryung; Gulzar, Muhammad Ali (ACM, 2023-11-30)Data-intensive scalable computing has become popular due to the increasing demands of analyzing big data. For example, Apache Spark and Hadoop allow developers to write dataflow-based applications with user-defined functions to process data with custom logic. Testing such applications is difficult. (1) These applications often take multiple datasets as input. (2) Unlike in SQL, there is no explicit schema for these datasets and each unstructured (or semi-structured) dataset is segmented and parsed at runtime. (3) Dataflow operators (e.g., join) create implicit co-dependence constraints between the fields of multiple datasets. An efficient and effective testing technique must analyze co-dependence among different regions of multiple datasets at the level of rows and columns and orchestrate input mutations jointly on co-dependent regions. We propose DepFuzz to increase the effectiveness and efficiency of fuzz testing dataflow-based big data applications. The key insight behind DepFuzz is twofold. It keeps track of which code segments operate on which datasets, which rows, and which columns. By analyzing the use of dataflow operators (e.g., join and groupByKey) in tandem with the semantics of UDFs, DepFuzz generates test data that subsequently reach hard-to-reach regions of the application code. In real-world big data applications, DepFuzz finds 3.4× more faults, achieving 29% more statement coverage in half the time as Jazzer’s, a state-of-the-art commercial fuzzer for Java bytecode. It outperforms prior DISC testing by exposing deeper semantic faults beyond simpler input formatting errors, especially when multiple datasets have complex interactions through dataflow operators.
- Natural Symbolic Execution-Based Testing for Big Data AnalyticsWu, Yaoxuan; Humayun, Ahmad; Gulzar, Muhammad Ali; Kim, Miryung (ACM, 2024-07-12)Symbolic execution is an automated test input generation technique that models individual program paths as logical constraints. However, the realism of concrete test inputs generated by SMT solvers often comes into question. Existing symbolic execution tools only seek arbitrary solutions for given path constraints. These constraints do not incorporate the naturalness of inputs that observe statistical distributions, range constraints, or preferred string constants. This results in unnatural-looking inputs that fail to emulate real-world data. In this paper, we extend symbolic execution with consideration for incorporating naturalness. Our key insight is that users typically understand the semantics of program inputs, such as the distribution of height or possible values of zipcode, which can be leveraged to advance the ability of symbolic execution to produce natural test inputs. We instantiate this idea in NaturalSym, a symbolic execution-based test generation tool for data-intensive scalable computing (DISC) applications. NaturalSym generates natural-looking data that mimics real-world distributions by utilizing user-provided input semantics to drastically enhance the naturalness of inputs, while preserving strong bug-finding potential. On DISC applications and commercial big data test benchmarks, NaturalSym achieves a higher degree of realism —as evidenced by a perplexity score 35.1 points lower on median, and detects 1.29× injected faults compared to the state-of-the-art symbolic executor for DISC, BigTest. This is because BigTest draws inputs purely based on the satisfiability of path constraints constructed from branch predicates, while NaturalSym is able to draw natural concrete values based on user-specified semantics and prioritize using these values in input generation. Our empirical results demonstrate that NaturalSym finds injected faults 47.8× more than NaturalFuzz (a coverage-guided fuzzer) and 19.1× more than ChatGPT. Meanwhile, TestMiner (a mining-based approach) fails to detect any injected faults. NaturalSym is the first symbolic executor that combines the notion of input naturalness in symbolic path constraints during SMT-based input generation. We make our code available at https://github.com/UCLA-SEAL/NaturalSym.