Browsing by Author "Islam, Rezawana"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Factors Affecting Fuel Transport of Firefighting FoamIslam, Rezawana (Virginia Tech, 2024-03-21)Aqueous film-forming foam (AFFF) used for fuel firefighting contains polyfluoroalkyl substances (PFAS) that have been identified as environmentally persistent and bioaccumulative resulting in phase out of AFFF. Currently, there are no environmentally friendly foams available that can perform at the same level as AFFF. Fuel transport has been recognized as a potential mechanism behind poor fire extinguishment, but the key features are yet unidentified. To fill these knowledge gaps, identifying the properties and features of surfactants used in firefighting foam that will prevent the transport of liquid fuel through the surfactant solution was imperative. To achieve that, this research was performed exclusively on single surfactants that have applications in firefighting foam. Impact of single surfactants on fuel transport was evaluated. Thermodynamics of the interaction between single surfactants and fuel; and kinetics of fuel transport through single surfactant solutions was observed. It was hypothesized that the liquid fuel transport would influence microstructure in the bulk of the surfactant solution. Experiments were conducted for different single surfactant structures. Various methods were applied to identify the microstructure and interfacial properties of surfactants with and without exposure to liquid fuel. The factor affecting microstructure, identified through this study was further used to evaluate the firefighting performance of single surfactants through ignition test. The thermodynamics of the interaction between fuel and single surfactants helped us to understand the fuel transport mechanism and role of micelle on fuel transport. Surfactant and fuel interaction has been studied below, at, and above the critical micelle concentration of surfactants. The effect of surfactant concentration, convection, and surfactant types were observed on the fuel transport. Moreover, an ignition test was conducted to evaluate the firefighting performance of single surfactants for various fuel types. Overall, the findings from this study will help design a new type of superefficient, environmentally acceptable surfactant for firefighting foam application.
- Understanding the Impact of Fuel on Surfactant Microstructure of Firefighting FoamIslam, Rezawana; Lattimer, Brian Y. (Springer Link, 2024-05-01)Aqueous film-forming foam is being phased out due to the environmental impacts of fluorinated surfactants contained in the firefighting foams. To develop an environmentally friendly firefighting foam, it is important to understand the factors controlling the firefighting performance of surfactants. Fuel transport through foam has been considered as a dominant mechanism for foam collapse. Therefore, the impact of fuels (heptane, octane and trimethylbenzene (TMB)) on surfactant microstructure was studied for three different types of surfactants (Capstone, Glucopon, and siloxane) that have applications in firefighting foam. Multiple techniques were used to identify the microstructure and interfacial properties of surfactants with and without exposure to liquid fuel. The ignition time of fuel vapor through foam and solubility of fuel through liquid surfactant solution were measured as well. This work shows fuel solubility has an impact on the surfactant microstructure and interfacial properties. In addition, fuel solubility and vapor pressure affect the ignition time of fuel vapors.