Browsing by Author "Ivanova, Natalia N."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Permanent Draft Genome Sequence of Desulfurococcus amylolyticus Strain Z-533(T), a Peptide and Starch Degrader Isolated from Thermal Springs in the Kamchatka Peninsula and Kunashir Island, RussiaSusanti, Dwi; Johnson, Eric F.; Lapidus, Alla; Han, James; Reddy, T. B. K.; Mukherjee, Supratim; Pillay, Manoj; Perevalova, Anna A.; Ivanova, Natalia N.; Woyke, Tanja; Kyrpides, Nikos C.; Mukhopadhyay, Biswarup (2017-04)Desulfurococcus amylolyticus Z-533(T), a hyperthermophilic crenarcheon, ferments peptide and starch, generating acetate, isobutyrate, isovalerate, CO2, and hydrogen. Unlike D. amylolyticus Z-1312, it cannot use cellulose and is inhibited by hydrogen. The reported draft genome sequence of D. amylolyticus Z-533(T) will help to understand the molecular basis for these differences.
- Permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, a thermoacidophilic sulfur-reducing crenarchaeon isolated from acidic hot springs of Hveravellir, IcelandSusanti, Dwi; Johnson, Eric F.; Lapidus, Alla; Han, James; Reddy, T. B. K.; Pillay, Manoj; Ivanova, Natalia N.; Markowitz, Victor M.; Woyke, Tanja; Kyrpides, Nikos C.; Mukhopadhyay, Biswarup (2016-01-13)This report presents the permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, an obligate anaerobic hyperthermophilic crenarchaeon that was isolated from acidic hot springs in Hveravellir, Iceland. D. mobilis utilizes peptides as carbon and energy sources and reduces elemental sulfur to H2S. A metabolic construction derived from the draft genome identified putative pathways for peptide degradation and sulfur respiration in this archaeon. Existence of several hydrogenase genes in the genome supported previous findings that H2 is produced during the growth of D. mobilis in the absence of sulfur. Interestingly, genes encoding glucose transport and utilization systems also exist in the D. mobilis genome though this archaeon does not utilize carbohydrate for growth. The draft genome of D. mobilis provides an additional mean for comparative genomic analysis of desulfurococci. In addition, our analysis on the Average Nucleotide Identity between D. mobilis and Desulfurococcus mucosus suggested that these two desulfurococci are two different strains of the same species.