Browsing by Author "Jacobson, Carl P."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Code Division Multiplexing of Fiber Optic and Microelectromechanical Systems (MEMS) SensorsJacobson, Carl P. (Virginia Tech, 2000-02-22)Multiplexing has evolved over the years from Emile Baudot's method of transmitting six simultaneous telegraph signals over one wire to the high-speed mixed-signal communications systems that are now commonplace. The evolution started with multiplexing identical information sources, such as plain old telephone service (POTS) devices. Recently, however, methods to combine signals from different information sources, such as telephone and video signals for example, have required new approaches to the development of software and hardware, and fundamental changes in the way we envision the basic block diagrams of communication systems. The importance of multiplexing cannot be overstated. To say that much of the current economic and technological progress worldwide is due in part to mixed-signal communications systems would not be incorrect. Along the vein of advancing the state-of-the-art, this dissertation research addresses a new area of multiplexing by taking a novel approach to network different-type sensors using software and signal processing. Two different sensor types were selected, fiber optics and MEMS, and were networked using code division multiplexing. The experimentation showed that the interconnection of these sensors using code division multiplexing was feasible and that the mixed signal demultiplexing software unique to this research allowed the disparate signals to be discerned. An analysis of an expanded system was performed with the results showing that the ultimate number of sensors that could be multiplexed with this technique ranges from the hundreds into the millions, depending on the specific design parameters used. Predictions about next-next generation systems using the techniques developed in the research are presented.
- Temperature corrected strain measurements using optical time domain reflectometryJacobson, Carl P. (Virginia Tech, 1990-05-12)A method of using optical fiber to measure strain and correct for the effects of temperature is proposed. A means of measuring apparent strain is given, pure temperature is measured using Fresnel-backscatter based Optical Time Domain Reflectometry, and a method for combining the two measurements to obtain a measurement of mechanically-induced strain alone is developed. The background, theory and experimental results that demonstrate the feasibility of such a system are presented and the results are compared with the performance of existing fiber-based means of measuring temperature. Experiments on several OTDR-addressed, intensity-based optical temperature sensors are performed and a method for manufacturing small air gap splices for use in measuring strain at several places along an optical fiber are presented.