Browsing by Author "Jain, Vaibhav"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Applications of Layer-by-Layer Films in Electrochromic Devices and Bending ActuatorsJain, Vaibhav (Virginia Tech, 2009-09-02)This thesis presents work done to improve the switching speed and contrast performance of electrochromic devices. Layer-by-Layer (LbL) assembly was used to deposit thin electrochromic films of materials ranging from organic, inorganic, conducting polymers, etc. The focus was on developing new materials with high contrast and long lifecycles. A detailed switching-speed study of solid-state EC devices of already-developed (PEDOT (Poly(3,4-ethylenedioxythiophene)), polyviologen, inorganic) materials and some new materials (Prodot-Sultone) was performed. Work was done to achieve the optimum thickness and number of bilayers in LbL films resulting in high-contrast and fast switching. Device sizes were varied for comparison of the performance of the lab-made prototype device with the commercially available "small pixel" size displays. Symmetrical EC devices were fabricated and tested whenever conducting polymers are used as an EC material. This symmetrical configuration utilizes conducting polymers as an electroactive layer on each of two ITO-coated substrates; potential is applied to the two layers of similar conducting polymers and the device changes color from one redox state to another. This method, along with LbL film assembly, are the main factors in the improvement of switching speed results over already-published work in the literature. PEDOT results show that EC devices fabricated by LbL assembly with a switching speed of less than 30 ms make EC flat-panel displays possible by adjusting film thickness, device size, and type of material. The high contrast value (84%) for RuP suggests that its LbL films can be used for low-power consumption displays where contrast, not fastest switching, is the prime importance. In addition to the electrochromic work, this thesis also includes a section on the application of LbL assembly in fabricating electromechanical bending actuators. For bending actuators based on ionic polymer metal composites (IPMCs), a new class of conductive composite network (CNC) electrode was investigated, based on LbL self-assembled multilayers of conductive gold (Au) nanoparticles. The CNC of an electromechanical actuator fabricated with 100 bilayers of polyallylamine hydrochloride (PAH)/Au NPs exhibits high strain value of 6.8% with an actuation speed of 0.18 seconds for a 26 µm thick IPMC with 0.4 µm thick LbL CNCs under 4 volts.
- Ion transport and storage of ionic liquids in ionic polymer conductor network compositesLiu, Yang; Liu, Sheng; Lin, Junhong; Wang, Dong; Jain, Vaibhav; Montazami, Reza; Heflin, James R.; Li, Jing; Madsen, Louis A.; Zhang, Q. M. (AIP Publishing, 2010-05-01)We investigate ion transport and storage of ionic liquids in ionic polymer conductor network composite electroactive devices. Specifically, we show that by combining the time domain electric and electromechanical responses, one can gain quantitative information on transport behavior of the two mobile ions in ionic liquids (i.e., cation and anion) in these electroactive devices. By employing a two carrier model, the total excess ions stored and strains generated by the cations and anions, and their transport times in the nanocomposites can be determined, which all depend critically on the morphologies of the conductor network nanocomposites. (C) 2010 American Institute of Physics. [doi:10.1063/1.3432664]
- Modification of single-walled carbon nanotube electrodes by layer-by-layer assembly for electrochromic devicesJain, Vaibhav; Yochum, Henry M.; Montazami, Reza; Heflin, James R.; Hu, Liangbing; Gruner, George (American Institute of Physics, 2008-04-01)We have studied the morphological properties and electrochromic (EC) performance of polythiophene multilayer films on single wall carbon nanotube (SWCNT) conductive electrodes. The morphology for different numbers of layer-by-layer (LbL) bilayer on the SWCNT electrode has been characterized with atomic force microscopy and scanning electron microscope, and it was found that the LbL multilayers significantly decrease the surface roughness of the nanoporous nanotube films. The controlled surface roughness of transparent nanotube electrodes could be beneficial for their device applications. We have also fabricated EC devices with LbL films of poly[2-(3-thienyl) ethoxy-4-butylsulfonate/poly(allylamine hydrochloride) on SWCNT electrodes, which not only have high EC contrast but also sustain higher applied voltage without showing any degradation for more than 20 000 cycles, which is not possible in the case of indium tin oxide electrodes. Cyclic voltammetry of the LbL films formed on SWCNT shows higher current at low potential, revealing the feasibility of SWCNT electrode as a good host for electrolyte ion insertion. (C) 2008 American Institute of Physics.