Browsing by Author "Janka, H-Thomas"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Fast neutrino flavor conversions in one-dimensional core-collapse supernova models with and without muon creationCapozzi, Francesco; Abbar, Sajad; Bollig, Robert; Janka, H-Thomas (2021-03-11)In very dense environments, neutrinos can undergo fast flavor conversions on scales as short as a few centimeters provided that the angular distribution of the neutrino lepton number crosses zero. This work presents the first attempt to establish whether the non-negligible abundance of muons and their interactions with neutrinos in the core of supernovae can affect the occurrence of such crossings. For this purpose we employ state-of-the-art one-dimensional core-collapse supernova simulations, considering models that include muon-neutrino interactions as well as models without these reactions. Although a consistent treatment of muons in the equation of state and neutrino transport does not seem to modify significantly the conditions for the occurrence of fast modes, it allows for the existence of an interesting phenomenon, namely fast instabilities in the mu - tau sector. We also show that crossings below the supernova shock are a relatively generic feature of the one-dimensional simulations under investigation, which contrasts with the previous reports in the literature. Our results highlight the importance of multidimensional simulations with muon creation, where our results must be tested in the future.
- On the characteristics of fast neutrino flavor instabilities in three-dimensional core-collapse supernova modelsAbbar, Sajad; Capozzi, Francesco; Glas, Robert; Janka, H-Thomas; Tamborra, Irene (2021-03-23)We assess the occurrence of fast neutrino flavor instabilities in two three-dimensional state-of-the-art core-collapse supernova simulations performed using a two-moment three-species neutrino transport scheme: one with an exploding 9M(circle dot) and one with a nonexploding 20M(circle dot) model. Apart from confirming the presence of fast instabilities occurring within the neutrino decoupling and the supernova pre-shock regions, we detect flavor instabilities in the post-shock region for the exploding model. These instabilities are likely to be scattering-induced. In addition, the failure in achieving a successful explosion in the heavier supernova model seems to seriously hinder the occurrence of fast instabilities in the post-shock region. This is a consequence of the large matter densities behind the stalled or retreating shock, which implies high neutrino scattering rates and thus more isotropic distributions of neutrinos and antineutrinos. Our findings suggest that the supernova model properties and the fate of the explosion can remarkably affect the occurrence of fast instabilities. Hence, a larger set of realistic hydrodynamical simulations of the stellar collapse is needed in order to make reliable predictions on the flavor conversion physics.