Browsing by Author "Jenko, Frank"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Advanced surrogate model for electron-scale turbulence in tokamak pedestalsFarcas, Ionut-Gabriel; Merlo, Gabriele; Jenko, Frank (Cambridge University Press, 2024-10-28)We derive an advanced surrogate model for predicting turbulent transport at the edge of tokamaks driven by electron temperature gradient (ETG) modes. Our derivation is based on a recently developed sensitivity-driven sparse grid interpolation approach for uncertainty quantification and sensitivity analysis at scale, which informs the set of parameters that define the surrogate model as a scaling law. Our model reveals that ETG-driven electron heat flux is influenced by the safety factor q, electron beta βe and normalized electron Debye length λD, in addition to well-established parameters such as the electron temperature and density gradients. To assess the trustworthiness of our model’s predictions beyond training, we compute prediction intervals using bootstrapping. The surrogate model’s predictive power is tested across a wide range of parameter values, including within-distribution testing parameters (to verify our model) as well as out-of-bounds and out-of-distribution testing (to validate the proposed model). Overall, validation efforts show that our model competes well with, or can even outperform, existing scaling laws in predicting ETG-driven transport.
- Scientific machine learning based reduced-order models for plasma turbulence simulationsGahr, Constantin; Farcas, Ionut-Gabriel; Jenko, Frank (AIP Publishing, 2024-11-18)This paper investigates non-intrusive Scientific Machine Learning (SciML) Reduced-Order Models (ROMs) for plasma turbulence simulations. In particular, we focus on Operator Inference (OpInf) to build low-cost physics-based ROMs from data for such simulations. As a representative example, we consider the (classical) Hasegawa-Wakatani (HW) equations used for modeling two-dimensional electrostatic drift-wave turbulence. For a comprehensive perspective of the potential of OpInf to construct predictive ROMs, we consider three setups for the HW equations by varying a key parameter, namely, the adiabaticity coefficient. These setups lead to the formation of complex and nonlinear dynamics, which makes the construction of predictive ROMs of any kind challenging. We generate the training datasets by performing direct numerical simulations of the HW equations and recording the computed state data and outputs over a time horizon of 100 time units in the turbulent phase. We then use these datasets to construct OpInf ROMs for predictions over 400 additional time units, that is, 400 % more than the training horizon. Our results show that the OpInf ROMs capture important statistical features of the turbulent dynamics and generalize beyond the training time horizon while reducing the computational effort of the high-fidelity simulation by up to five orders of magnitude. In the broader context of fusion research, this shows that non-intrusive SciML ROMs have the potential to drastically accelerate numerical studies, which can ultimately enable tasks such as the design of optimized fusion devices.