Browsing by Author "Jha, Pramod K."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Climatic Trends in Different Bioclimatic Zones in the Chitwan Annapurna Landscape, NepalLuitel, Dol Raj; Jha, Pramod K.; Siwakoti, Mohan; Shrestha, Madan Lall; Muniappan, Rangaswamy (Muni) (MDPI, 2020-11-20)The Chitwan Annapurna Landscape (CHAL) is the central part of the Himalayas and covers all bioclimatic zones with major endemism of flora, unique agro-biodiversity, environmental, cultural and socio-economic importance. Not much is known about temperature and precipitation trends along the different bioclimatic zones nor how changes in these parameters might impact the whole natural process, including biodiversity and ecosystems, in the CHAL. Analysis of daily temperature and precipitation time series data (1970–2019) was carried out in seven bioclimatic zones extending from lowland Terai to the higher Himalayas. The non-parametric Mann-Kendall test was applied to determine the trends, which were quantified by Sen’s slope. Annual and decade interval average temperature, precipitation trends, and lapse rate were analyzed in each bioclimatic zone. In the seven bioclimatic zones, precipitation showed a mixed pattern of decreasing and increasing trends (four bioclimatic zones showed a decreasing and three bioclimatic zones an increasing trend). Precipitation did not show any particular trend at decade intervals but the pattern of rainfall decreases after 2000AD. The average annual temperature at different bioclimatic zones clearly indicates that temperature at higher elevations is increasing significantly more than at lower elevations. In lower tropical bioclimatic zone (LTBZ), upper tropical bioclimatic zone (UTBZ), lower subtropical bioclimatic zone (LSBZ), upper subtropical bioclimatic zone (USBZ), and temperate bioclimatic zone (TBZ), the average temperature increased by 0.022, 0.030, 0.036, 0.042 and 0.051 °C/year, respectively. The decade level temperature scenario revealed that the hottest decade was from 1999–2009 and average decade level increases of temperature at different bioclimatic zones ranges from 0.2 to 0.27 °C /decade. The average temperature and precipitation was found clearly different from one bioclimatic zone to other. This is the first time that bioclimatic zone level precipitation and temperature trends have been analyzed for the CHAL. The rate of additional temperature rise at higher altitudes compared to lower elevations meets the requirements to mitigate climate change in different bioclimatic zones in a different ways. This information would be fundamental to safeguarding vulnerable communities, ecosystem and relevant climate-sensitive sectors from the impact of climate change through formulation of sector-wise climate change adaptation strategies and improving the livelihood of rural communities.
- Potential suitable habitat of Eleusine coracana (L) gaertn (Finger millet) under the climate change scenarios in NepalLuitel, Dol R.; Siwakoti, Mohan; Joshi, Mohan D.; Rangaswami, Muniappan; Jha, Pramod K. (2020-04-06)Background Finger millet is the fourth major crop in Nepal and is cultivated in a traditional integrated subsistence system. Timely rain and appropriate temperature predominately affects crop distribution and yield. Climate change is evident in Nepal and it is imperative to understand how it affects habitat suitability of finger millet. Main objective of this study was to map the current suitable habitat and predicting the potential changes in the future under different climate scenarios in Nepal. Habitat mapping is important for maximizing production and minimizing the loss of local landraces. Results Maxent model was used in this study to quantify the current suitable habitat and changes in the future habitat suitability of finger millet, based on representative concentration pathways (RCP) (RCP 2.6, 4.5, 6.0 and 8.5) in two different time periods (2050 and 2070AD) using climatic predictive variables and species localities. The model shows that 39.7% (58512.71 km2) area of Nepal is highly suitable for finger millet, with cultivation mostly between 96 and 2300 m above sea level. Eastern and central parts of Nepal have more suitable areas than western parts. Our research clearly shows that the future climatic suitable area of finger millet would shrink by 4.3 to 8.9% in 2050 and 8.9–10.5% under different RCPs by 2070. Conclusion Finger millet is mostly cultivated in mid-hill terraces. The substantial increase in temperature due to climate change may be one reason for decrease in habitat suitability of finger millet. This situation would further threat loss of local landraces of finger millet in the future. The findings can help in planning and policy framing for climate resilient smart agriculture practice.
- Prevalence of Puccinia abrupta var. partheniicola and its impact on Parthenium hysterophorus in Kathmandu Valley, NepalMaharjan, Seerjana; Devkota, Anjana; Shrestha, Bharat B.; Baniya, Chitra B.; Rangaswamy, Muniappan; Jha, Pramod K. (2020-10-21)Background Parthenium hysterophorus is a noxious invasive weed in tropical and subtropical regions of the world, including Nepal. Among 11 species of biological control agents released to control P. hysterophorus in Ausrtalia, winter rust Puccina abrupta var. partheniicola arrived fortuitously and has established in Kathmandu Valley, Nepal, nearly a decade back. However, the prevalence and effectiveness of this rust as a biological control agent in Kathmandu remain unknown. To address this knowledge gap, a roadside survey was done at an interval of 2 ± 0.25 km in Kathmandu Valley to assess the P. abrupta var. partheniicola incidence and its impacts on P. hysterophorus. Infested individuals of P. hysterophorus were further divided into four severity classes (very low, low, medium, and high), and rust incidence was calculated. The impact of the winter rust on the growth of P. hysterophorus was assessed by comparing biomass and seed output of infested and non-infested individuals. Results Among 81 locations where P. hysterophorus was present in the Kathmandu Valley, winter rust infestation was observed at 98% locations. At some locations within Kathmandu Valley such as Tinkune, Kirtipur, Chabahil, Buddha Chowk, and Dhobighat, the impacts of the rust on P. hysterophorus were medium to high. Aboveground biomass and seed output of P. hysterophorus were reduced by 47% and 73%, respectively, due to winter rust infestation. The study indicates that winter rust incidence is widespread in Kathmandu Valley with very low to high levels of damages to P. hysterophorus depending on the localities. Conclusion The rust has, therefore, a potential to reduce the growth performance of P. hysterophorus, and it can be used as a component of integrated management of P. hysterophorus by introducing to other suitable areas in Nepal.