Browsing by Author "Jing, Baoyu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Causality-Aware Spatiotemporal Graph Neural Networks for Spatiotemporal Time Series ImputationJing, Baoyu; Zhou, Dawei; Ren, Kan; Yang, Carl (ACM, 2024-10-21)Spatiotemporal time series are usually collected via monitoring sensors placed at different locations, which usually contain missing values due to various failures, such as mechanical damages and Internet outages. Imputing the missing values is crucial for analyzing time series. When recovering a specific data point, most existing methods consider all the information relevant to that point regardless of the cause-and-effect relationship. During data collection, it is inevitable that some unknown confounders are included, e.g., background noise in time series and non-causal shortcut edges in the constructed sensor network. These confounders could open backdoor paths and establish non-causal correlations between the input and output. Over-exploiting these non-causal correlations could cause overfitting. In this paper, we first revisit spatiotemporal time series imputation from a causal perspective and show how to block the confounders via the frontdoor adjustment. Based on the results of frontdoor adjustment, we introduce a novel Causality- Aware Spatiotemporal Graph Neural Network (Casper), which contains a novel Prompt Based Decoder (PBD) and a Spatiotemporal Causal Attention (SCA). PBD could reduce the impact of confounders and SCA could discover the sparse causal relationships among embeddings. Theoretical analysis reveals that SCA discovers causal relationships based on the values of gradients. We evaluate Casper on three real-world datasets, and the experimental results show that Casper could outperform the baselines and could effectively discover the causal relationships.
- Mastering Long-Tail Complexity on Graphs: Characterization, Learning, and GeneralizationWang, Haohui; Jing, Baoyu; Ding, Kaize; Zhu, Yada; Cheng, Wei; Zhang, Si; Fan, Yonghui; Zhang, Liqing; Zhou, Dawei (ACM, 2024-08-25)In the context of long-tail classification on graphs, the vast majority of existing work primarily revolves around the development of model debiasing strategies, intending to mitigate class imbalances and enhance the overall performance. Despite the notable success, there is very limited literature that provides a theoretical tool for characterizing the behaviors of long-tail classes in graphs and gaining insight into generalization performance in real-world scenarios. To bridge this gap, we propose a generalization bound for long-tail classification on graphs by formulating the problem in the fashion of multi-task learning, i.e., each task corresponds to the prediction of one particular class. Our theoretical results show that the generalization performance of long-tail classification is dominated by the overall loss range and the task complexity. Building upon the theoretical findings, we propose a novel generic framework Hier- Tail for long-tail classification on graphs. In particular, we start with a hierarchical task grouping module that allows us to assign related tasks into hypertasks and thus control the complexity of the task space; then, we further design a balanced contrastive learning module to adaptively balance the gradients of both head and tail classes to control the loss range across all tasks in a unified fashion. Extensive experiments demonstrate the effectiveness of HierTail in characterizing long-tail classes on real graphs, which achieves up to 12.9% improvement over the leading baseline method in balanced accuracy.