Browsing by Author "Johnson, Blake N."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Acoustofluidic particle trapping, manipulation, and release using dynamic-mode cantilever sensorsJohnson, Blake N.; Mutharasan, Raj (Royal Society of Chemistry, 2016-11-23)We show here that dynamic-mode cantilever sensors enable acoustofluidic fluid mixing and trapping of suspended particles as well as the rapid manipulation and release of trapped micro-particles via mode switching in liquid. Resonant modes of piezoelectric cantilever sensors over the 0 to 8 MHz frequency range are investigated. Sensor impedance response, flow visualization studies using dye and micro-particle tracers (100 mum diameter), and finite element simulations of cantilever modal mechanics and acoustic streaming show fluid mixing and particle trapping configurations depend on the resonant mode shape. We found trapped particles could be: (1) rapidly manipulated on millimeter length scales, and (2) released from the cantilever surface after trapping by switching between low- and high-order resonant modes (less than 250 kHz and greater than 1 MHz, respectively). Such results suggest a potentially promising future for dynamic-mode cantilevers in separations, pumping and mixing applications as well as acoustofluidic-enhanced sensing applications.
- Low-cost sensor-integrated 3D-printed personalized prosthetic hands for children with amniotic band syndrome: A case study in sensing pressure distribution on an anatomical human-machine interface (AHMI) using 3D-printed conformal electrode arraysTong, Yuxin; Kucukdeger, Ezgi; Halper, Justin; Cesewski, Ellen; Karakozoff, Elena; Haring, Alexander P.; McIlvain, David; Singh, Manjot; Khandelwal, Nikita; Meholic, Alex; Laheri, Sahil; Sharma, Akshay; Johnson, Blake N. (PLOS, 2019)Interfacing anatomically conformal electronic components, such as sensors, with biology is central to the creation of next-generation wearable systems for health care and human augmentation applications. Thus, there is a need to establish computer-aided design and manufacturing methods for producing personalized anatomically conformal systems, such as wearable devices and human-machine interfaces (HMIs). Here, we show that a three-dimensional (3D) scanning and 3D printing process enabled the design and fabrication of a sensor-integrated anatomical human-machine interface (AHMI) in the form of personalized prosthetic hands that contain anatomically conformal electrode arrays for children affected by amniotic band syndrome, a common birth defect. A methodology for identifying optimal scanning parameters was identified based on local and global metrics of registered point cloud data quality. This method identified an optimal rotational angle step size between adjacent 3D scans. The sensitivity of the optimization process to variations in organic shape (i.e., geometry) was examined by testing other anatomical structures, including a foot, an ear, and a porcine kidney. We found that personalization of the prosthetic interface increased the tissue-prosthesis contact area by 408% relative to the non-personalized devices. Conformal 3D printing of carbon nanotube-based polymer inks across the personalized AHMI facilitated the integration of electronic components, specifically, conformal sensor arrays for measuring the pressure distribution across the AHMI (i.e., the tissue-prosthesis interface). We found that the pressure across the AHMI exhibited a non-uniform distribution and became redistributed upon activation of the prosthetic hand's grasping action. Overall, this work shows that the integration of 3D scanning and 3D printing processes offers the ability to design and fabricate wearable systems that contain sensor-integrated AHMIs.
- Macrophage Activation in the Dorsal Root Ganglion in Rats Developing Autotomy after Peripheral Nerve InjuryXu, Xiang; Zhou, Xijie; Du, Jian; Liu, Xiao; Qing, Liming; Johnson, Blake N.; Jia, Xiaofeng (MDPI, 2021-11-26)Autotomy, self-mutilation of a denervated limb, is common in animals after peripheral nerve injury (PNI) and is a reliable proxy for neuropathic pain in humans. Understanding the occurrence and treatment of autotomy remains challenging. The objective of this study was to investigate the occurrence of autotomy in nude and Wistar rats and evaluate the differences in macrophage activation and fiber sensitization contributing to the understanding of autotomy behavior. Autotomy in nude and Wistar rats was observed and evaluated 6 and 12 weeks after sciatic nerve repair surgery. The numbers of macrophages and the types of neurons in the dorsal root ganglion (DRG) between the two groups were compared by immunofluorescence studies. Immunostaining of T cells in the DRG was also assessed. Nude rats engaged in autotomy with less frequency than Wistar rats. Autotomy symptoms were also relatively less severe in nude rats. Immunofluorescence studies revealed increased macrophage accumulation and activation in the DRG of Wistar rats. The percentage of NF200+ neurons was higher at 6 and 12 weeks in Wistar rats compared to nude rats, but the percentage of CGRP+ neurons did not differ between two groups. Additionally, macrophages were concentrated around NF200-labeled A fibers. At 6 and 12 weeks following PNI, CD4+ T cells were not found in the DRG of the two groups. The accumulation and activation of macrophages in the DRG may account for the increased frequency and severity of autotomy in Wistar rats. Our results also suggest that A fiber neurons in the DRG play an important role in autotomy.
- Predicting mechanical property plateau in laser polymer powder bed fusion additive manufacturing via the critical coalescence ratioChatham, Camden A.; Bortner, Michael J.; Johnson, Blake N.; Long, Timothy E.; Williams, Christopher B. (Elsevier, 2021-01-21)The state of the art in property-process relationships in the laser polymer powder bed fusion (LPPBF) subcategory of powder bed fusion (PBF) has derived relationships between the energy supplied and polymer thermal properties governing melting and degradation, so-called the “energy melt ratio (EMR).” The EMR provides a framework for process parameter value selection based solely on melting behavior. However, coalescence, and not merely melting, is the basis for mechanical properties in LPPBF printed parts. The authors present a method for (1) predicting polymer coalescence based on transient temperature profiles resulting from a combination of LPPBF process parameter values and (2) connecting the predicted coalescence response to the observed onset of a plateau in mechanical properties. This work tests the hypothesis that the observed onset of a mechanical property plateau corresponds with a transition in consolidation physics. Complete coalescence must be achieved prior to the onset of physical gelation. For this work, in situ transient temperature profiles were obtained using infrared thermography. Coalescence prediction, via the Upper-convected Maxwell model, and physical gelation prediction, via Lauritzen-Hoffman and Avrami equations, were found to successfully identify LPPBF parameter combinations resulting in parts with density and tensile strength inside the plateau region. The hypothesis that the plateau occurs at the onset of closed pore morphology is supported.
- Therapeutic effects of peripherally administrated neural crest stem cells on pain and spinal cord changes after sciatic nerve transectionZhang, Yang; Xu, Xiang; Tong, Yuxin; Zhou, Xijie; Du, Jian; Choi, In Y.; Yue, Shouwei; Lee, Gabsang; Johnson, Blake N.; Jia, Xiaofeng (2021-03-15)Background Severe peripheral nerve injury significantly affects patients’ quality of life and induces neuropathic pain. Neural crest stem cells (NCSCs) exhibit several attractive characteristics for cell-based therapies following peripheral nerve injury. Here, we investigate the therapeutic effect of NCSC therapy and associated changes in the spinal cord in a sciatic nerve transection (SNT) model. Methods Complex sciatic nerve gap injuries in rats were repaired with cell-free and cell-laden nerve scaffolds for 12 weeks (scaffold and NCSC groups, respectively). Catwalk gait analysis was used to assess the motor function recovery. The mechanical withdrawal threshold and thermal withdrawal latency were used to assess the development of neuropathic pain. Activation of glial cells was examined by immunofluorescence analyses. Spinal levels of extracellular signal-regulated kinase (ERK), NF-κB P65, brain-derived neurotrophic factor (BDNF), growth-associated protein (GAP)-43, calcitonin gene-related peptide (CGRP), and inflammation factors were calculated by western blot analysis. Results Catwalk gait analysis showed that animals in the NCSC group exhibited a higher stand index and Max intensity At (%) relative to those that received the cell-free scaffold (scaffold group) (p < 0.05). The mechanical and thermal allodynia in the medial-plantar surface of the ipsilateral hind paw were significantly relieved in the NCSC group. Sunitinib (SNT)-induced upregulation of glial fibrillary acidic protein (GFAP) (astrocyte) and ionized calcium-binding adaptor molecule 1 (Iba-1) (microglia) in the ipsilateral L4–5 dorsal and ventral horn relative to the contralateral side. Immunofluorescence analyses revealed decreased astrocyte and microglia activation. Activation of ERK and NF-κB signals and expression of transient receptor potential vanilloid 1 (TRPV1) expression were downregulated. Conclusion NCSC-laden nerve scaffolds mitigated SNT-induced neuropathic pain and improved motor function recovery after sciatic nerve repair. NCSCs also protected the spinal cord from SNT-induced glial activation and central sensitization.