Browsing by Author "Johnson, Zachary"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Folate regulates RNA m5C modification and translation in neural stem cellsXu, Xiguang; Johnson, Zachary; Wang, Amanda; Padget, Rachel L.; Smyth, James W.; Xie, Hehuang (2022-11-23)Background Folate is an essential B-group vitamin and a key methyl donor with important biological functions including DNA methylation regulation. Normal neurodevelopment and physiology are sensitive to the cellular folate levels. Either deficiency or excess of folate may lead to neurological disorders. Recently, folate has been linked to tRNA cytosine-5 methylation (m5C) and translation in mammalian mitochondria. However, the influence of folate intake on neuronal mRNA m5C modification and translation remains largely unknown. Here, we provide transcriptome-wide landscapes of m5C modification in poly(A)-enriched RNAs together with mRNA transcription and translation profiles for mouse neural stem cells (NSCs) cultured in three different concentrations of folate. Results NSCs cultured in three different concentrations of folate showed distinct mRNA methylation profiles. Despite uncovering only a few differentially expressed genes, hundreds of differentially translated genes were identified in NSCs with folate deficiency or supplementation. The differentially translated genes induced by low folate are associated with cytoplasmic translation and mitochondrial function, while the differentially translated genes induced by high folate are associated with increased neural stem cell proliferation. Interestingly, compared to total mRNAs, polysome mRNAs contained high levels of m5C. Furthermore, an integrative analysis indicated a transcript-specific relationship between RNA m5C methylation and mRNA translation efficiency. Conclusions Altogether, our study reports a transcriptome-wide influence of folate on mRNA m5C methylation and translation in NSCs and reveals a potential link between mRNA m5C methylation and mRNA translation.
- Neuronal Depolarization Induced RNA m5C Methylation Changes in Mouse Cortical NeuronsXu, Xiguang; Johnson, Zachary; Xie, Hehuang (MDPI, 2022-06-29)Neuronal activity is accomplished via substantial changes in gene expression, which may be accompanied by post-transcriptional modifications including RNA cytosine-5 methylation (m5C). Despite several reports on the transcriptome profiling of activated neurons, the dynamics of neuronal mRNA m5C modification in response to environmental stimuli has not been explored. Here, we provide transcriptome-wide maps of m5C modification, together with gene expression profiles, for mouse cortical neurons at 0 h, 2 h, and 6 h upon membrane depolarization. Thousands of differentially expressed genes (DEGs) were identified during the neuronal depolarization process. In stimulated neurons, the majority of early response genes were found to serve as expression regulators of late response genes, which are involved in signaling pathways and diverse synaptic functions. With RNA bisulfite sequencing data, a union set of 439 m5C sites was identified with high confidence, and approximately 30% of them were shared by neurons at all three time points. Interestingly, over 41% of the m5C sites showed increased methylation upon neuronal activation and were enriched in transcripts coding for proteins with synaptic functions. In addition, a modest negative correlation was observed between RNA expression and methylation. In summary, our study provided dynamic transcriptome-wide landscapes of RNA m5C methylation in neurons, and revealed that mRNA m5C methylation is associated with the regulation of gene expression.