Browsing by Author "Jordan, Nicholas R."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Reviewing research priorities in weed ecology, evolution and management: a horizon scanNeve, Paul; Barney, Jacob; Buckley, Yvonne; Cousens, Roger D.; Graham, Sonia; Jordan, Nicholas R.; Lawton-Rauh, Amy; Liebman, Matthew; Mesgaran, Mohsen B.; Schut, Marc; Shaw, Justine D.; Storkey, Jonathan; Baraibar, Barbara; Baucom, Regina S.; Chalak, Morteza; Childs, Dylan Z.; Christensen, Svend; Eizenberg, Hanan; Fernandez-Quintanilla, Cesar; French, Kris O.; Harsch, Melanie A.; Heijting, Sanne; Harrison, Laura J.; Loddo, Donato; Macel, Mirka; Maczey, Norbert; Merotto Jr., Aldo; Mortensen, David; Necajeva, Jevgenija; Peltzer, Duane A.; Recasens, Jordi; Renton, Michael; Riemens, Marleen; Sonderskov, Mette; Williams, Michael (2018-08)Weedy plants pose a major threat to food security, biodiversity, ecosystem services and consequently to human health and wellbeing. However, many currently used weed management approaches are increasingly unsustainable. To address this knowledge and practice gap, in June 2014, 35 weed and invasion ecologists, weed scientists, evolutionary biologists and social scientists convened a workshop to explore current and future perspectives and approaches in weed ecology and management. A horizon scanning exercise ranked a list of 124 pre-submitted questions to identify a priority list of 30 questions. These questions are discussed under seven themed headings that represent areas for renewed and emerging focus for the disciplines of weed research and practice. The themed areas considered the need for transdisciplinarity, increased adoption of integrated weed management and agroecological approaches, better understanding of weed evolution, climate change, weed invasiveness and finally, disciplinary challenges for weed science. Almost all the challenges identified rested on the need for continued efforts to diversify and integrate agroecological, socio-economic and technological approaches in weed management. These challenges are not newly conceived, though their continued prominence as research priorities highlights an ongoing intransigence that must be addressed through a more system-oriented and transdisciplinary research agenda that seeks an embedded integration of public and private research approaches. This horizon scanning exercise thus set out the building blocks needed for future weed management research and practice; however, the challenge ahead is to identify effective ways in which sufficient research and implementation efforts can be directed towards these needs.
- Seed-shattering phenology at soybean harvest of economically important weeds in multiple regions of the United States. Part 1: Broadleaf speciesSchwartz-Lazaro, Lauren M.; Shergill, Lovreet S.; Evans, Jeffrey A.; Bagavathiannan, Muthukumar V.; Beam, Shawn C.; Bish, Mandy D.; Bond, Jason A.; Bradley, Kevin W.; Curran, William S.; Davis, Adam S.; Everman, Wesley J.; Flessner, Michael L.; Haring, Steven C.; Jordan, Nicholas R.; Korres, Nicholas E.; Lindquist, John L.; Norsworthy, Jason K.; Sanders, Tameka L.; Steckel, Larry E.; VanGessel, Mark J.; Young, Blake; Mirsky, Steven B. (2021-01)Potential effectiveness of harvest weed seed control (HWSC) systems depends upon seed shatter of the target weed species at crop maturity, enabling its collection and processing at crop harvest. However, seed retention likely is influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed-shatter phenology in 13 economically important broadleaf weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to 4 wk after physiological maturity at multiple sites spread across 14 states in the southern, northern, and mid-Atlantic United States. Greater proportions of seeds were retained by weeds in southern latitudes and shatter rate increased at northern latitudes. Amaranthus spp. seed shatter was low (0% to 2%), whereas shatter varied widely in common ragweed (Ambrosia artemisiifolia L.) (2% to 90%) over the weeks following soybean physiological maturity. Overall, the broadleaf species studied shattered less than 10% of their seeds by soybean harvest. Our results suggest that some of the broadleaf species with greater seed retention rates in the weeks following soybean physiological maturity may be good candidates for HWSC.
- Seed-shattering phenology at soybean harvest of economically important weeds in multiple regions of the United States. Part 2: Grass speciesSchwartz-Lazaro, Lauren M.; Shergill, Lovreet S.; Evans, Jeffrey A.; Bagavathiannan, Muthukumar V.; Beam, Shawn C.; Bish, Mandy D.; Bond, Jason A.; Bradley, Kevin W.; Curran, William S.; Davis, Adam S.; Everman, Wesley J.; Flessner, Michael L.; Haring, Steven C.; Jordan, Nicholas R.; Korres, Nicholas E.; Lindquist, John L.; Norsworthy, Jason K.; Sanders, Tameka L.; Steckel, Larry E.; VanGessel, Mark J.; Young, Blake; Mirsky, Steven B. (2021-01)Seed shatter is an important weediness trait on which the efficacy of harvest weed seed control (HWSC) depends. The level of seed shatter in a species is likely influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed shatter of eight economically important grass weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to 4 wk after maturity at multiple sites spread across 11 states in the southern, northern, and mid-Atlantic United States. From soybean maturity to 4 wk after maturity, cumulative percent seed shatter was lowest in the southern U.S. regions and increased moving north through the states. At soybean maturity, the percent of seed shatter ranged from 1% to 70%. That range had shifted to 5% to 100% (mean: 42%) by 25 d after soybean maturity. There were considerable differences in seed-shatter onset and rate of progression between sites and years in some species that could impact their susceptibility to HWSC. Our results suggest that many summer annual grass species are likely not ideal candidates for HWSC, although HWSC could substantially reduce their seed output during certain years.