Browsing by Author "Kalen, Nicholas J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Mid-Atlantic Big Brown and Eastern Red Bats: Relationships between Acoustic Activity and Reproductive PhenologyDeeley, Sabrina; Ford, W. Mark; Kalen, Nicholas J.; Freeze, Samuel R.; St. Germain, Michael; Muthersbaugh, Michael; Barr, Elaine; Kniowski, Andrew; Silvis, Alexander; De La Cruz, Jesse (MDPI, 2022-04-21)Acoustic data are often used to describe bat activity, including habitat use within the summer reproductive period. These data inform management activities that potentially impact bats, currently a taxa of high conservation concern. To understand the relationship between acoustic and reproductive timing, we sampled big brown bats (Eptesicus fuscus) and eastern red bats (Lasiurus borealis) on 482 mist-netting and 35,410 passive acoustic sampling nights within the District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia, 2015-2018. We documented the proportion of female, pregnant, lactating, and juvenile big brown and eastern red bats within each mist-net sampling event and calculated locally estimated non-parametric scatterplot smoothing (LOESS) lines for each reproductive and acoustic dataset. We compared the peak in acoustic activity with the peaks of each reproductive condition. We determined that the highest levels of acoustic activity within the maternity season were most associated with the period wherein we captured the highest proportions of lactating bats, not juvenile bats, as often assumed.
- Post-white-nose syndrome passive acoustic sampling effort for determining bat species occupancy within the mid-Atlantic regionDeeley, Sabrina M.; Kalen, Nicholas J.; Freeze, Samuel R.; Barr, Elaine L.; Ford, W. Mark (2021-06)We assessed the sampling effort requirements for detecting the presence of extant bat species following the impact of white-nose syndrome in the mid-Atlantic region of the United States. We acoustically sampled 27,796 nights across 846 sites between 15 May and 15 August 2016-2018 within the District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia. We developed simulations to determine the number of sites required to document bat species when each site was sampled different numbers of nights. We examined these simulations with respect to land cover, physiographic region, and time period. We generally found that sampling a greater number of sample sites within a survey area increased detection more than increasing the number of nights at individual sampling sites. The sampling effort required to detect a given bat species varied by species, as well as land-cover type and physiographic region. Our results suggest that land managers and researchers should use caution in using protocols developed with other objectives, e.g., the U.S. Fish and Wildlife Service endangered and threatened bat species and the North American Bat monitoring programs? methods are designed relative to their specific needs. Unfortunately, neither protocol may be adequate for accurately detecting bat communities within all mid-Atlantic areas.
- Seasonal Activity Patterns of Northern Long-eared Bats on the Coastal Mid-AtlanticDe La Cruz, Jesse L.; Kalen, Nicholas J.; Barr, Elaine L.; Thorne, Emily D.; Silvis, Alexander; Reynolds, Richard J.; Ford, W. Mark (2024)Conservation of bats declining from white-nose syndrome (WNS) impacts requires an understanding of both temporal and landscape-level habitat relationships. Traditionally, much of the research on bat ecology has focused on behavior of summer maternity colonies within species’ distribution cores, including that of the endangered northern long-eared bat (Myotis septentrionalis). To further our knowledge of this species, we evaluated multi-season activity patterns in eastern North Carolina and Virginia, including areas where populations were recently discovered. We used passive acoustic monitoring to assess relative and probable activity of northern long-eared bats from October 2016 to August 2021. Northern long-eared bat relative activity was greatest in areas containing greater proportions of woody wetlands and upland pine-dominated evergreen forests. However, the likelihood of recording northern long-eared bats was associated with smaller proportions of woody wetlands and open water resources. Furthermore, we observed a higher probability of recording northern long-eared bats during non-winter seasons. Probable activity was greatest at temperatures be- tween 10 and 25 C, potentially highlighting an optimal thermoneutral zone for the species regionally. Relative activity of northern long-eared bats on the Coastal Plain of Virginia and North Carolina was primarily driven by cover features, whereas probable activity was driven by a combination of cover features, seasonality, and temperature. Therefore, acoustical surveys for this species may be most effective when targeting woody wetlands adjacent to upland forests, particularly upland pine-dominated evergreen stands, during moderate temperatures of non-winter seasons (1 April–15 November). Moreover, conservation of a diverse mosaic of woody wetlands juxtaposed by upland forests may promote both roosting and overwintering habitat, thereby enhancing overwintering survival, maternity colony establishment, and ultimately, successful reproduction of northern long-eared bats.