Browsing by Author "Kang, Hosung"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- How wind drives the correlation between leaf shape and mechanical propertiesLouf, Jean-Francois; Nelson, Logan; Kang, Hosung; Song, Pierre Ntoh; Zehnbauer, Tim; Jung, Sunghwan (Springer Nature, 2018-11-05)From a geometrical point of view, a non-sessile leaf is composed of two parts: a large flat plate called the lamina, and a long beam called the petiole which connects the lamina to the branch/stem. While wind is exerting force (e.g. drag) on the lamina, the petiole undergoes twisting and bending motions. To survive in harsh abiotic conditions, leaves may have evolved to form in different shapes, resulting from a coupling between the lamina geometry and the petiole mechanical properties. In this study, we measure the shape of laminae from 120 simple leaf species (no leaflets). Leaves of the same species are found to be geometrically similar regardless of their size. From tensile/torsional tests, we characterize the bending rigidity (EI) and the twisting rigidity (GJ) of 15 petioles of 4 species in the Spring/Summer: Red Oak (Quercus Rubra), American Sycamore (Platanus occidentalis), Yellow Poplar (Liriodendron tulipifera), and Sugar Maple (Acer saccharum). A twist-to-bend ratio EI/GJ is found to be around 4.3, within the range in previous studies conducted on similar species (EI/GJ = 2.7 similar to 8.0 reported in S. Vogel, 1992). In addition, we develop a simple energetic model to find a relation between geometrical shapes and mechanical properties (EI/GJ = 2L(L)/W-C where L-L is the laminar length and W-C is the laminar width), verified with experimental data. Lastly, we discuss leaf's ability to reduce stress at the stem-petiole junction by choosing certain geometry, and also present exploratory results on the effect that seasons have on the Young's and twisting moduli.
- Mechanics of removing water from the ear canal: Rayleigh-Taylor instabilityKim, Seungho; Baskota, Anuj; Kang, Hosung; Jung, Sunghwan (Cambridge University Press, 2023-05)Water stuck in the ear is a common problem during showering, swimming or other water activities. Having water trapped in the ear canal for a long time can lead to ear infections and possibly result in hearing loss. A common strategy for emptying water from the ear canal is to shake the head, where high acceleration helps remove the water. In this present study, we rationalize the underlying mechanism of water ejection/removal from the ear canal by performing experiments and developing a stability theory. From the experiments, we measure the critical acceleration to remove the trapped water inside different sizes of canals. Our theoretical model, modified from the Rayleigh-Taylor instability, can explain the critical acceleration observed in experiments, which strongly depends on the radius of the ear canal. The resulting critical acceleration tends to increase, especially in smaller ear canals, which indicates that shaking heads for water removal can be more laborious and potentially threatening to children due to their small size of the ear canal compared with adults.
- The Role of Electric Pressure/Stress Suppressing Pinhole Defect on Coalescence Dynamics of Electrified DropletLee, Jaehyun; Esmaili, Ehsan; Kang, Giho; Seong, Baekhoon; Kang, Hosung; Kim, Jihoon; Jung, Sunghwan; Kim, Hyunggun; Byun, Doyoung (MDPI, 2021-04-25)The dimple occurs by sudden pressure inversion at the droplet’s bottom interface when a droplet collides with the same liquid-phase or different solid-phase. The air film entrapped inside the dimple is a critical factor affecting the sequential dynamics after coalescence and causing defects like the pinhole. Meanwhile, in the coalescence dynamics of an electrified droplet, the droplet’s bottom interfaces change to a conical shape, and droplet contact the substrate directly without dimple formation. In this work, the mechanism for the dimple’s suppression (interfacial change to conical shape) was studied investigating the effect of electric pressure. The electric stress acting on a droplet interface shows the nonlinear electric pressure adding to the uniform droplet pressure. This electric stress locally deforms the droplet’s bottom interface to a conical shape and consequentially enables it to overcome the air pressure beneath the droplet. The electric pressure, calculated from numerical tracking for interface and electrostatic simulation, was at least 108 times bigger than the air pressure at the center of the coalescence. This work helps toward understanding the effect of electric stress on droplet coalescence and in the optimization of conditions in solution-based techniques like printing and coating.
- Seasonal changes in morphology govern wettability of Katsura leavesKang, Hosung; Graybill, Philip M.; Fleetwood, Sara; Boreyko, Jonathan B.; Jung, Sunghwan (PLOS, 2018-09-27)Deciduous broad-leaf trees survive and prepare for winter by shedding their leaves in fall. During the fall season, a change in a leaf's wettability and its impact on the leaf-fall are not well understood. In this study, we measure the surface morphology and wettability of Katsura leaves from the summer to winter, and reveal how leaf structural changes lead to wettability changes. The averaged contact angle of leaves decreases from 147 degrees to 124 degrees while the contact-angle hysteresis significantly increases by about 35 degrees, which are attributed to dehydration and erosion of nano-wax. Due to such wettability changes, fall brown leaves support approximately 17 times greater water volume than summer leaves.