Browsing by Author "Kang, Hyunwoo"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Climate change impacts on conventional and flash droughts in the Mekong River BasinKang, Hyunwoo; Sridhar, Venkataramana; Ali, Syed A. (Elsevier, 2022-09-10)Recent drought events in the Mekong River Basin (MRB) have resulted in devastating environmental and economic losses, and climate change and human-induced alterations have exacerbated drought conditions. Using hydrologic models and multiple climate change scenarios, this study quantified the future climate change impacts on conventional and flash drought conditions in the MRB. The Soil and Water Assessment Tool (SWAT) and Variable Infiltration Capacity (VIC) models were applied to estimate long-term drought indices for conventional and flash drought conditions over historical and future periods (1966–2099), using two emission scenarios (RCP 4.5 and RCP8.5), and four climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). For the conventional drought assessment, monthly scale drought indices were estimated, and pentad-scale (5 days) drought indices were computed for the flash drought evaluations. There were overall increases in droughts from the SWAT model for the conventional drought conditions and overall decreases from the VIC model. For the flash drought conditions, the SWAT-driven drought indices showed overall increases in drought occurrences (up to 165%). On the contrary, the VIC-driven drought indices presented decreases in drought occurrences (up to −44%). The conventional and flash drought evaluations differ between these models as they partition the water budget, specifically soil moisture differently. We conclude that the proposed framework, which includes hydrologic models, various emission scenarios, and projections, allows us to assess the various perspectives on drought conditions. Basin countries have differential impacts, so targeted future adaptation strategy is required.
- Combined statistical and spatially distributed hydrological model for evaluating future drought indices in VirginiaKang, Hyunwoo; Sridhar, Venkataramana (Elsevier, 2017-06-06)Study region: Virginia, United States. Study focus: Climate change is expected to impact the intensity and severity of droughts; therefore, it is necessary to simulate future drought conditions using temperature and precipitation projections and hydrological models to derive reliable hydrological variables and drought indices. The objective of this study was to evaluate climate change influences on future drought potential and water resources in five major river basins in Virginia. In this study, the Soil and Water Assessment Tool (SWAT) and Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models were used to compute a Standardized Soil Moisture Index (SSI), a Multivariate Standardized Drought Index (MSDI), and a Modified Palmer Drought Severity Index (MPDSI) for both historic and future periods. The drought conditions were evaluated, and their occurrences were determined at river basin scales. New hydrological insights for the region: The results of the ensemble mean of SSI indicated that there was an overall increase in agricultural drought occurrences projected in the New (> 1.3 times) and Rappahannock (> 1.13 times) river basins due to increases in evapotranspiration and surface and groundwater flow. However, MSDI and MPDSI exhibited a decrease in projected future drought, despite increases in precipitation, which suggests that it is essential to use hybridmodeling approaches and to interpret application-specific drought indices that consider both precipitation and temperature changes.
- Description of future drought indices in VirginiaKang, Hyunwoo; Sridhar, Venkataramana (Elsevier, 2017-07-20)This article presents projected future drought occurrences in five river basins in Virginia. The Soil and Water Assessment Tool (SWAT) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models were used to derive input variables of multiple drought indices, such as the Standardized Soil Moisture index (SSI), the Multivariate Standardized Drought Index (MSDI), and the Modified Palmer Drought Severity Index (MPDSI) for both historic and future periods. The results of SSI indicate that there was an overall increase in agricultural drought occurrences and that these were caused by increases in evapotranspiration and runoff. However, the results of the MSDI and MPDSI projected a decrease in drought occurrences in future periods due to a greater increase in precipitation in the future. Furthermore, GCM-downscaled products (precipitation and temperature) were verified using comparisons with historic observations, and the results of uncertainty analyses suggest that the lower and upper bounds of future drought projections agree with historic conditions.
- Future rice farming threatened by drought in the Lower Mekong BasinKang, Hyunwoo; Sridhar, Venkataramana; Mainuddin, Mohammed; Le, Duc Trung (Nature Research, 2021-04-30)The Lower Mekong River basin (LMB) has experienced droughts in recent decades, causing detrimental economic losses and food security conundrums. This study quantified the impact of climate change on drought, and rainfed rice production in the LMB. The Soil and Water Assessment Tool (SWAT) and AquaCrop models were used to evaluate long-term drought indices and rainfed rice yields under historical and future climate conditions (1954–2099) with four climate models and two emission scenarios (RCP 4.5 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We found that rice yield might increase (24–43%) due to the elevated levels of atmospheric CO2 concentration (+ 34.3 to + 121.9%) and increases in precipitation. Contrastingly, considerable decreases in rice yield up to 1.5 ton/ha in the Vietnam Central High Plain (VCHP) region could be expected resulting from reduced precipitation by about 34% during drought years. To avert any major food crisis, an expansion of irrigation areas could be required to compensate for the expected reduction in rice yields. We conclude that a framework combining hydrology and crop models to assess climate change impacts on food production is key to develop adaptation strategies in the future.
- Human-Induced Alterations to Land Use and Climate and Their Responses for Hydrology and Water Management in the Mekong River BasinSridhar, Venkataramana; Kang, Hyunwoo; Ali, Syed Azhar (MDPI, 2019-06-25)The Mekong River Basin (MRB) is one of the significant river basins in the world. For political and economic reasons, it has remained mostly in its natural condition. However, with population increases and rapid industrial growth in the Mekong region, the river has recently become a hotbed of hydropower development projects. This study evaluated these changing hydrological conditions, primarily driven by climate as well as land use and land cover change between 1992 and 2015 and into the future. A 3% increase in croplands and a 1–2% decrease in grasslands, shrublands, and forests was evident in the basin. Similarly, an increase in temperature of 1–6 °C and in precipitation of 15% was projected for 2015–2099. These natural and climate-induced changes were incorporated into two hydrological models to evaluate impacts on water budget components, particularly streamflow. Wet season flows increased by up to 10%; no significant change in dry season flows under natural conditions was evident. Anomaly in streamflows due to climate change was present in the Chiang Saen and Luang Prabang, and the remaining flow stations showed up to a 5% increase. A coefficient of variation <1 suggested no major difference in flows between the pre- and post-development of hydropower projects. The results suggested an increasing trend in streamflow without the effect of dams, while the inclusion of a few major dams resulted in decreased river streamflow of 6% to 15% possibly due to irrigation diversions and climate change. However, these estimates fall within the range of uncertainties in natural climate variability and hydrological parameter estimations. This study offers insights into the relationship between biophysical and anthropogenic factors and highlights that management of the Mekong River is critical to optimally manage increased wet season flows and decreased dry season flows and handle irrigation diversions to meet the demand for food and energy production.
- Improved Drought Prediction Using Near Real-Time Climate Forecasts and Simulated Hydrologic ConditionsKang, Hyunwoo; Sridhar, Venkataramana (MDPI, 2018-05-30)Short-term drought forecasting is helpful for establishing drought mitigation plans and for managing risks that often ensue in water resource systems. Additionally, hydrologic modeling using high-resolution spatial and temporal data is used to simulate the land surface water and energy fluxes, including runoff, baseflow, and soil moisture, which are useful for drought forecasting. In this study, the Soil and Water Assessment Tool (SWAT) and Variable Infiltration Capacity (VIC) models are used for short-term drought forecasting in the contiguous United States (CONUS), as many areas in this region are frequently affected by varying drought intensities. Weekly-to-seasonal meteorological inputs are provided by the Climate Prediction Center (CPC) for the retrospective period (January 2012 to July 2017) and Climate Forecasting System version 2 (CFS v2) for the forecasting period (August 2017 to April 2018), and these inputs are used to estimate agricultural and groundwater drought conditions. For drought assessment, three drought indices, namely, the Standardized Soil Moisture index (SSI), the Multivariate Standardized Drought Index (MSDI), and the Standardized Baseflow index (SBI), were analyzed. The accuracy of the forecasting results was verified using several a performance measure (Drought area agreement (%); DA). Generally, eight weeks of lead time forecasting showed good drought predictability from both the SWAT and VIC models for the MSDI simulations (62% for SWAT and 64% for VIC for all drought categories). However, the DA values for eight weeks lead time forecasting for SSI were 23% (SWAT) and 10% (VIC) and 7% (SWAT) and 7% (VIC) for the SBI, respectively. In addition, the accuracies of drought predictions remarkably decreased after eight weeks, and the average DA values were 36% for SWAT and 38% for VIC due to an increase in the uncertainties associated with meteorological variables in CFS v2 products. For example, there are increases in the total number of grids where the absolute values of monthly differences between CFSv2 and CPC observations exceed 20 mm and 1 °C during the forecasting period. Additionally, drought forecasting using only one variable (i.e., SSI and SBI) showed low prediction performances even for the first eight weeks. The results of this study provide insights into drought forecasting methods and provide a better understanding to plan for timely water resource management decisions.
- A Review of the Integrated Effects of Changing Climate, Land Use, and Dams on Mekong River HydrologyPokhrel, Yadu; Burbano, Mateo; Roush, Jacob; Kang, Hyunwoo; Sridhar, Venkataramana; Hyndman, David W. (MDPI, 2018-03-03)The ongoing and proposed construction of large-scale hydropower dams in the Mekong river basin is a subject of intense debate and growing international concern due to the unprecedented and potentially irreversible impacts these dams are likely to have on the hydrological, agricultural, and ecological systems across the basin. Studies have shown that some of the dams built in the tributaries and the main stem of the upper Mekong have already caused basin-wide impacts by altering the magnitude and seasonality of flows, blocking sediment transport, affecting fisheries and livelihoods of downstream inhabitants, and changing the flood pulse to the Tonle Sap Lake. There are hundreds of additional dams planned for the near future that would result in further changes, potentially causing permanent damage to the highly productive agricultural systems and fisheries, as well as the riverine and floodplain ecosystems. Several studies have examined the potential impacts of existing and planned dams but the integrated effects of the dams when combined with the adverse hydrologic consequences of climate change remain largely unknown. Here, we provide a detailed review of the existing literature on the changes in climate, land use, and dam construction and the resulting impacts on hydrological, agricultural, and ecological systems across the Mekong. The review provides a basis to better understand the effects of climate change and accelerating human water management activities on the coupled hydrological-agricultural-ecological systems, and identifies existing challenges to study the region’s Water, Energy, and Food (WEF) nexus with emphasis on the influence of future dams and projected climate change. In the last section, we synthesize the results and highlight the urgent need to develop integrated models to holistically study the coupled natural-human systems across the basin that account for the impacts of climate change and water infrastructure development. This review provides a framework for future research in the Mekong, including studies that integrate hydrological, agricultural, and ecological modeling systems.
- Soil Moisture-driven Drought Evaluation under Present and Future ConditionsKang, Hyunwoo (Virginia Tech, 2018-08-29)Drought is one of the most severe natural disasters and detrimentally impacts water resources, agricultural production, the environment, and the economy. Climate change is expected to influence the frequency and severity of extreme droughts. This dissertation evaluates drought conditions using a variety of hydrologic modeling approaches include short-term drought forecasting, long-term drought projection, and a coupled surface-groundwater dynamic drought assessment. The economic impacts of drought are also explored through a linked economic impact model. Study results highlight the need for various drought assessment approaches and provide insights into the array of tools and techniques that can be employed to generate decision-support tools for drought mitigation plans and water resource allocation. For short-term drought forecasting, the Soil and Water Assessment Tool (SWAT) and Variable Infiltration Capacity (VIC) models are used with a meteorological forecasting dataset. Results indicate that eight weeks of lead-time drought forecasting show good drought predictability for the Contiguous United States (CONUS). For the drought projection at a finer scale, both SWAT and VIC models are applied with Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model outputs to derive multiple drought indices for the Chesapeake Bay watershed and five river basins in Virginia. The results indicate that current climate change projections will lead to increased drought in the entire Chesapeake Bay watershed and Virginia river basins because of increases in the sum of evapotranspiration, and surface and groundwater discharge. The impacts of climate change on future agricultural droughts and associated economy-wide implications are then evaluated using the VIC and IMPLAN (IMpact analysis for PLANning) model for the several congressional districts in Virginia. The result indicated that increases in agricultural drought in the future would lead to decreases in agricultural productions and job losses. Finally, a coupled framework using the VIC and MODFLOW models is implemented for the Chesapeake Bay and the Northern Atlantic Coastal Plain aquifer system, and the results of a drought index that incorporates groundwater conditions performs better for some drought periods. Hydrologic modeling framework with multiple hydrologic models and various scales can provide a better understanding of drought assessments because the comparisons and contrasts of diverse methods are available.