Browsing by Author "Kang, Min-Gyu"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- 3D printed graphene-based self-powered strain sensors for smart tires in autonomous vehiclesMaurya, Deepam; Khaleghian, Seyedmeysam; Sriramdas, Rammohan; Kumar, Prashant; Kishore, Ravi Anant; Kang, Min-Gyu; Kumar, Vireshwar; Song, Hyun-Cheol; Lee, Seul-Yi; Yan, Yongke; Park, Jung-Min (Jerry); Taheri, Saied; Priya, Shashank (2020-10-26)The transition of autonomous vehicles into fleets requires an advanced control system design that relies on continuous feedback from the tires. Smart tires enable continuous monitoring of dynamic parameters by combining strain sensing with traditional tire functions. Here, we provide breakthrough in this direction by demonstrating tire-integrated system that combines direct mask-less 3D printed strain gauges, flexible piezoelectric energy harvester for powering the sensors and secure wireless data transfer electronics, and machine learning for predictive data analysis. Ink of graphene based material was designed to directly print strain sensor for measuring tire-road interactions under varying driving speeds, normal load, and tire pressure. A secure wireless data transfer hardware powered by a piezoelectric patch is implemented to demonstrate self-powered sensing and wireless communication capability. Combined, this study significantly advances the design and fabrication of cost-effective smart tires by demonstrating practical self-powered wireless strain sensing capability. Designing efficient sensors for smart tires for autonomous vehicles remains a challenge. Here, the authors present a tire-integrated system that combines direct mask-less 3D printed strain gauges, flexible piezoelectric energy harvester for powering the sensors and secure wireless data transfer electronics, and machine learning for predictive data analysis.
- Enhanced torsional actuation and stress coupling in Mn-modified 0.93(Na0.5Bi0.5TiO3)-0.07BaTiO(3) lead-free piezoceramic systemBerik, Pelin; Maurya, Deepam; Kumar, Prashant; Kang, Min-Gyu; Priya, Shashank (Taylor & Francis, 2017-01-01)
- Recent Progress on PZT Based Piezoelectric Energy Harvesting TechnologiesKang, Min-Gyu; Jung, Woo-Suk; Kang, Chong-Yun; Yoon, Seok-Jin (MDPI, 2016-02-22)Energy harvesting is the most effective way to respond to the energy shortage and to produce sustainable power sources from the surrounding environment. The energy harvesting technology enables scavenging electrical energy from wasted energy sources, which always exist everywhere, such as in heat, fluids, vibrations, etc. In particular, piezoelectric energy harvesting, which uses a direct energy conversion from vibrations and mechanical deformation to the electrical energy, is a promising technique to supply power sources in unattended electronic devices, wireless sensor nodes, micro-electronic devices, etc., since it has higher energy conversion efficiency and a simple structure. Up to now, various technologies, such as advanced materials, micro- and macro-mechanics, and electric circuit design, have been investigated and emerged to improve performance and conversion efficiency of the piezoelectric energy harvesters. In this paper, we focus on recent progress of piezoelectric energy harvesting technologies based on PbZrxTi1-xO3 (PZT) materials, which have the most outstanding piezoelectric properties. The advanced piezoelectric energy harvesting technologies included materials, fabrications, unique designs, and properties are introduced to understand current technical levels and suggest the future directions of piezoelectric energy harvesting.
- Room temperature ferromagnetic resonance in hetero-epitaxial BTO-BFO/LSMO magnetoelectric compositeMadon, Benjamin; Kang, Han Byul; Kang, Min-Gyu; Maurya, Deepam; Magill, Brenden A.; Alves, Marcos J.P.; Wegrowe, Jean-Eric; Drouhin, Henri-Jean; Priya, Shashank; Khodaparast, Giti A. (American Institute of Physics, 2018-10-30)We synthesized epitaxial BTO-BFO heterostructure with decreased leakage and simultaneously improved the multiferroic properties. This study provides new direction for ferromagnetic resonance studies, in high quality BTO-BFO films grown on LSMO. We observed small Gilbert damping (=0.004) and the absence of large inhomogeneous broadening, in a film with 80 nm thickness of BTO-BFO on LSMO (110). This fact offers opportunities for employing this material system for spin transfer in multifunctional materials where controlling magnetization by a flow of spin angular momentum, or spin current, is crucial toward developing nanoscale spin-based memory and devices. Magnetic insulators, such as BTO-BFO on LSMO, are potentially excellent candidates for pure spin current without the existence of charge current.
- Thermo-Magneto-Electric Generator Arrays for Active Heat Recovery SystemChun, Jinsung; Song, Hyun-Cheol; Kang, Min-Gyu; Kang, Han Byul; Kishore, Ravi Anant; Priya, Shashank (Springer Nature, 2017-02-01)Continued emphasis on development of thermal cooling systems is being placed that can cycle low grade heat. Examples include solar powered unmanned aerial vehicles (UAVs) and data storage servers. The power efficiency of solar module degrades at elevated temperature, thereby, necessitating the need for heat extraction system. Similarly, data centres in wireless computing system are facing increasing efficiency challenges due to high power consumption associated with managing the waste heat. We provide breakthrough in addressing these problems by developing thermo-magneto-electric generator (TMEG) arrays, composed of soft magnet and piezoelectric polyvinylidene difluoride (PVDF) cantilever. TMEG can serve dual role of extracting the waste heat and converting it into useable electricity. Near room temperature second-order magnetic phase transition in soft magnetic material, gadolinium, was employed to obtain mechanical vibrations on the PVDF cantilever under small thermal gradient. TMEGs were shown to achieve high vibration frequency at small temperature gradients, thereby, demonstrating effective heat transfer.