Browsing by Author "Kasap, Murat"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Characterization of ESBL (SHV-12) producing clinical isolate of Enterobacter aerogenes from a tertiary care hospital in NigeriaKasap, Murat; Fashae, Kayode; Torol, Sinem; Kolayli, Fetiye; Budak, Fatma; Vahaboglu, Haluk (2010-01-12)Background We studied the beta-lactamases of an E. aerogenes isolate recovered from the blood of a two-year-old patient. The isolate demonstrated a disk-diffusion phenotype typical for an AmpC-ESBL co-producer. Methods Microbiology studies were performed according to standard protocols. The resistance gene was identified by transconjugation and cloning experiments. Results By transconjugation only a narrow spectrum beta-lactamase (TEM-1) encoded on a small plasmid was transmitted. The ESBL was cloned and expressed in an E. coli host. Sequence analysis of the recombinant plasmid revealed blaSHV-12 associated to the insertion sequence, IS26. Conclusion This is the first study demonstrated the occurrence of SHV-12 in Nigeria.
- Hydrogenase of Clostridium acetobutylicum ATCC 824Kasap, Murat (Virginia Tech, 1997-08-04)C. acetobutylicum is an anaerobic bacterium that produces acetic and butyric acids, hydrogen gas, and carbon dioxide during the exponential phase of growth. When the culture pH is allowed to remain near 4.5, the metabolism switches to the production of the neutral compounds (solvents) - acetone, n-butanol, and ethanol. The two metabolic phases are known as the acidogenic and solventogenic phases. The enzyme hydrogenase plays an important role in this bacterium because it converts excess reducing power into hydrogen gas to maintain a balance in the oxidation-reduction state in the cell. During solventogenesis, additional reducing power is used in the production of n-butanol and ethanol, which leaves excess reducing power to be vented as hydrogen gas. There are conflicting reports about the level of hydrogenase in acidogenic and solventogenic cells. There is also evidence that hydrogenase may consume too much reducing power during solventogenensis that it actually decreases the cell's capacity to produce solvents. The purpose of this study was to examine the level of hydrogenase in acidogenic and solventogenic cells and to search for clues that may indicate the presence of multiple forms of hydrogenase in C. acetobutylicum. Both the hydrogen-oxidation (uptake) and the hydrogen-production (evolution) activities were measured in this study. The level of hydrogenase was found higher in acidogenic cells than in solventogenic cells, but there was no difference in the molecular weight of hydrogenase from these two types of cells. A significant increase in the ratio of the hydrogen-uptake over the hydrogen-evolution activity was observed in oxygen or heat-treated cell extracts and in hydrogenase partially purified on a DEAE-cellulose column. The results suggest the presence of more than one type of hydrogenase in this species or hydrogenase activities in the two directions may be differentially altered. These possibilities will be investigated in a future study.
- Nitrogen Metabolism and Solvent Production in Clostridium Beijerinckii Nrrl B593Kasap, Murat (Virginia Tech, 2002-07-12)The onset of solvent production by the clostridia involves regulation at the transcriptional level. The signal triggering the onset has not been identified, but redox and energetic states have been suggested as possible factors. Because several solvent-producing clostridia, including Clostridium acetobutylicum and Clostridium beijerinckii, are nitrogen-fixing organisms and both nitrogen-fixation and alcohol production (n-butanol, isopropanol and ethanol) are reductant-dependent processes, the effect of nitrogen fixation on the onset and progression of solvent production in C. beijerinckii NRRL B593 and vice versa was investigated. For this purpose, a defined growth medium containing three amino acids was developed for C. beijerinckii NRRL B593, and this medium was used for growing solvent-producing and nitrogen-fixing cultures. The nitrogen-fixing cultures produced solvents with a solventogenic shift, which appeared to coincide with a decrease in nitrogen-fixing activity. Measurement of specific activities of acetoacetate decarboxylase and aldehyde dehydrogenase and Northern blot analysis of the mRNA of the solvent-producing genes in samples harvested periodically from a nitrogen-fixing culture of C. beijerinckii showed the presence of both enzyme activities and the mRNA carrying the solvent-production genes throughout incubation. A 2.5-fold increase in the specific activity of acetoacetate decarboxylase and a 4.5-fold increase in the specific activity of aldehyde dehydrogenase were observed when the activities in the latest cell-free extract was compared with the activities in the earliest cell-free extract. When C. beijerinckii was grown in the medium containing 4 mM ammonium acetate, the onset of nitrogen fixation coincided with the onset of solvent production and prevented accumulation of solvents to high levels, which suggested competition between alcohol-producing enzymes and nitrogenase for the reductant. Recently, a 20-kb region of the genomic DNA of C. beijerinckii NRRL B593 that contained the nif genes and ORFs with other putative functions was sequenced in our laboratory. An examination of the nif clusters of C. beijerinckii, C. acetobutylicum and C. pasteurianum revealed apparent differences in the intervening ORFs which suggested differences in the regulation of nitrogen fixation in these organisms. Transcriptional analysis of genes in the nif cluster of C. beijerinckii by Northern blotting revealed four different transcripts. The absence of mRNAs of the nif-associated ORFs in RNA samples isolated from non-nitrogen-fixing cells indicated that the nif-associated ORFs are regulated in parallel to the nif genes. By studying the effect of ammonia addition on nitrogen-fixing activities of C. beijerinckii and C. pasteurianum, significant differences in the regulation of nitrogen-fixation in the two species were observed. C. beijerinckii NRRL B593, but not C. pasteurianum, showed a rapid decrease in nitrogen-fixing activity in vivo upon ammonium acetate addition. However, measurement of nitrogen-fixing activities in vitro before and after ammonium acetate addition showed the presence of active nitrogenase throughout growth in both organisms. The results suggest that the nitrogenase activity in C. beijerinckii NRRL B593 is inhibited when ammonia is available. A second nifH-hybridizing mRNA was detected in Northern blots during studies of the expression of nifH1 in C. pasteurianum. The mRNA was identified as that from either the nifH2 or nifH6 gene after sequencing the cDNA strands, which were generated by RT (Reverse Transcriptase)-PCR. In addition, Western blot analysis of the cell-free extracts of nitrogen-fixing cells of C. pasteurianum indicated the presence of a second NifH-related polypeptide. The two NifH-related polypeptides were separated by preparative gel electrophoresis and characterized by MALDI-TOF (Matrix-assisted Laser Desorption Ionization Time-Of-Flight) mass spectrometry. The results suggested the expression of NifH2/H6 protein in nitrogen-fixing cells of C. pasteurianum. The physiological significance of the expression of the nifH2 or nifH6 gene or both is yet to be determined.