Browsing by Author "Keane, Jessica A."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Fibroblast Growth Factor 21 Has a Diverse Role in Energetic and Reproductive Physiological Functions of Female Beef CattlePrezotto, Ligia D.; Keane, Jessica A.; Cupp, Andrea S.; Thorson, Jennifer F. (MDPI, 2023-10-12)Fibroblast growth factor 21 (FGF21) has been identified in multiple mammalian species as a molecular marker of energy metabolism while also providing negative feedback to the gonads. However, the role of FGF21 in regulating the energetic and reproductive physiology of beef heifers and cows has yet to be characterized. Herein, we investigated the temporal concentrations of FGF21 in female beef cattle from the prepubertal period to early lactation. Circulating concentrations of FGF21, non-esterified fatty acids, plasma urea nitrogen, glucose, and progesterone were assessed. Ultrasonography was employed to determine the onset of puberty and resumption of postpartum ovarian cyclicity as well as to measure backfat thickness. Finally, cows and calves underwent the weigh-suckle-weigh technique to estimate rate of milk production. We have revealed that FGF21 has an expansive role in the physiology of female beef cattle, including pubertal onset, adaptation to nutritional transition, rate of body weight gain, circulating markers of metabolism, and rate of milk production. In conclusion, FGF21 plays a role in physiological functions in beef cattle that can be applied to advance the understanding of basic scientific processes governing the nutritional regulation of reproductive function but also provides a novel means for beef cattle producers to select parameters of financial interest.
- Influences of Supplementing Selective Members of the Interleukin-6 Cytokine Family on Bovine Oocyte CompetencyMcKinley, Endya; Speckhart, Savannah L.; Keane, Jessica A.; Oliver, Mary A.; Rhoads, Michelle L.; Edwards, J. Lannett; Biase, Fernando H.; Ealy, Alan D. (MDPI, 2023-12-21)This work explored whether supplementing selective members of the interleukin-6 (IL6) cytokine family during in vitro bovine oocyte maturation affects maturation success, cumulus–oocyte complex (COC) gene expression, fertilization success, and embryo development potential. Human recombinant proteins for IL6, IL11, and leukemia inhibitory factor (LIF) were supplemented to COCs during the maturation period, then fertilization and embryo culture commenced without further cytokine supplementation. The first study determined that none of these cytokines influenced the rate that oocytes achieved arrest at meiosis II. The second study identified that LIF and IL11 supplementation increases AREG transcript abundance. Supplementation with IL6 supplementation did not affect AREG abundance but reduced HAS2 transcript abundance. Several other transcriptional markers of oocyte competency were not affected by any of the cytokines. The third study determined that supplementing these cytokines during maturation did not influence fertilization success, but either LIF or IL11 supplementation increased blastocyst development. No effect of IL6 supplementation on subsequent blastocyst development was detected. The fourth experiment explored whether each cytokine treatment affects the post-thaw survivability of cryopreserved IVP blastocysts. None of the cytokines supplemented during oocyte maturation produced any positive effects on post-thaw blastocyst re-expansion and hatching. In conclusion, these outcomes implicate IL11 and LIF as potentially useful supplements for improving bovine oocyte competency.
- An Overview of Reactive Oxygen Species Damage Occurring during In Vitro Bovine Oocyte and Embryo Development and the Efficacy of Antioxidant Use to Limit These Adverse EffectsKeane, Jessica A.; Ealy, Alan D. (MDPI, 2024-01-21)The in vitro production (IVP) of bovine embryos has gained popularity worldwide and in recent years and its use for producing embryos from genetically elite heifers and cows has surpassed the use of conventional superovulation-based embryo production schemes. There are, however, several issues with the IVP of embryos that remain unresolved. One limitation of special concern is the low efficiency of the IVP of embryos. Exposure to reactive oxygen species (ROS) is one reason why the production of embryos with IVP is diminished. These highly reactive molecules are generated in small amounts through normal cellular metabolism, but their abundances increase in embryo culture because of oocyte and embryo exposure to temperature fluctuations, light exposure, pH changes, atmospheric oxygen tension, suboptimal culture media formulations, and cryopreservation. When uncontrolled, ROS produce detrimental effects on the structure and function of genomic and mitochondrial DNA, alter DNA methylation, increase lipid membrane damage, and modify protein activity. Several intrinsic enzymatic pathways control ROS abundance and damage, and antioxidants react with and reduce the reactive potential of ROS. This review will focus on exploring the efficiency of supplementing several of these antioxidant molecules on oocyte maturation, sperm viability, fertilization, and embryo culture.