Browsing by Author "Keith Norambuena, Brian Felipe"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Narrative Maps: A Computational Model to Support Analysts in Narrative SensemakingKeith Norambuena, Brian Felipe (Virginia Tech, 2023-08-08)Narratives are fundamental to our understanding of the world, and they are pervasive in all activities that involve representing events in time. Narrative analysis has a series of applications in computational journalism, intelligence analysis, and misinformation modeling. In particular, narratives are a key element of the sensemaking process of analysts. In this work, we propose a narrative model and visualization method to aid analysts with this process. In particular, we propose the narrative maps framework—an event-based representation that uses a directed acyclic graph to represent the narrative structure—and a series of empirically defined design guidelines for map construction obtained from a user study. Furthermore, our narrative extraction pipeline is based on maximizing coherence—modeled as a function of surface text similarity and topical similarity—subject to coverage—modeled through topical clusters—and structural constraints through the use of linear programming optimization. For the purposes of our evaluation, we focus on the news narrative domain and showcase the capabilities of our model through several case studies and user evaluations. Moreover, we augment the narrative maps framework with interactive AI techniques—using semantic interaction and explainable AI—to create an interactive narrative model that is capable of learning from user interactions to customize the narrative model based on the user's needs and providing explanations for each core component of the narrative model. Throughout this process, we propose a general framework for interactive AI that can handle similar models to narrative maps—that is, models that mix continuous low-level representations (e.g., dimensionality reduction) with more abstract high-level discrete structures (e.g., graphs). Finally, we evaluate our proposed framework through an insight-based user study. In particular, we perform a quantitative and qualitative assessment of the behavior of users and explore their cognitive strategies, including how they use the explainable AI and semantic interaction capabilities of our system. Our evaluation shows that our proposed interactive AI framework for narrative maps is capable of aiding users in finding more insights from data when compared to the baseline.