Browsing by Author "Kelly, Shawn Michael"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Characterization and Thermal Modeling of Laser Formed Ti-6Al-4VKelly, Shawn Michael (Virginia Tech, 2002-05-09)The current work focuses on three aspects of laser formed Ti-6Al-4V: an evaluation of the as-deposited and heat treated macro and microstructures and preliminary results obtained from a model developed to calculate the temperature profile resultant of the laser forming process. A "solution treat and age" heat treatment with a variable cooling rate was performed on the Laser Formed Ti-6Al-4V single line builds. Increasing the cooling rate decreases the acicular alpha grain size in the basketweave Widmanstätten alpha plus untransformed beta microstructure. Distinct features of the as-deposited macrostructure include: large columnar prior-beta grains that have grown epitaxially through multiple deposited layers; a well defined heat affected zone in the substrate; and the presence of "layer bands," a macroscopic banding present at the top of every layer except for the last three layers to be deposited. The nominal microstructure between the layer bands consists of acicular basketweave Widmanstätten alpha outlined in untransformed beta. The alpha grain width is smaller just above a layer band and larger just below a layer band. The microstructure of the layer band consists of larger colonies of acicular alpha outlined in untransformed beta. The gradient in the alpha grain size and presence of the layer band is due to thermal cycling as opposed to segregation effects which were ruled out using quantitative compositional analyses. Through analysis of the microstructural results the gradient in the nominal microstructure and formation of the layer band in layer n was caused by the deposition of layer n+2, and n+3, respectively. A thermal model has been developed to assist in the prediction and interpretation of the as-processed microstructure. The model is used to explain that the microstructural evolution of the layer bands and gradient microstructure in layer n is due to the deposition of layer n+2. The difference in the two analyses of microstructural evolution based on microstructural observations and thermal model results are due to differences in the parameter sets used to build and model the deposit.
- Thermal and Microstructure Modeling of Metal Deposition Processes with Application to Ti-6Al-4VKelly, Shawn Michael (Virginia Tech, 2004-11-12)Laser metal deposition (LMD) offers a unique combination of process flexibility, time savings, and reduced cost in producing titanium alloy components. The current challenge in processing titanium alloys using LMD methods is understanding the complex microstructure evolution as a part is fabricated layer by layer. The current work focuses on the characterization, thermal, and microstructural modeling of multilayered Ti-6Al-4V deposits. A thermal model has been developed using finite difference techniques to predict the thermal history of LMD processes. A microstructure model that predicts the alpha phase fraction and morphology evolution was constructed to quantify the effect of thermal cycling on the as-deposited microstructure evolution. Alpha dissolution and growth are modeled assuming one-dimensional plate dissolution according to a parabolic rate law, and a Johnson-Mehl-Avrami-Kolmorgorov (JMAK) nucleation and growth model, respectively. Alpha morphology (colony-alpha and basketweave-alpha) evolution is tracked using a simplistic approach. Characterization of the deposit has shown that a complex microstructure evolves consisting of a two distinct regions: a transient region of undeveloped microstructure and a characteristic layer that is periodically repeated throughout the deposit. The transient region contains a fine basketweave and colony-alpha morphology. The characteristic layer contains a two phase mixture of alpha+beta, with the alpha phase exhibits regions of colony-alpha (layer band) and basketweave-alpha morphology. The different regions of microstructural contrast in the deposit are associated with thermal cycling. The thermal model results show that a heat affected zone defined by the beta transus extends approximately 3 layers into the deposit. The phase fraction model predicts the greatest variation in microstructural evolution to occur in a layer n after the deposition of layer n+3. The results of the morphology model show that increased amounts of colony-alpha form near the top of a characteristic layer. It follows that a layer band (colony-alpha region) forms as a result of heating a region of material to a peak temperature just below the beta transus, where a large amount of primary-alpha dissolves. Upon cooling, colony-alpha forms intragranularly. The coupled thermal and microstructure models offer a way to quantitatively map microstructure during LMD processing of Ti-6Al-4V.