Browsing by Author "Kemper, Andrew R."
Now showing 1 - 20 of 36
Results Per Page
Sort Options
- Biomechanical Investigation of Head Kinematics and Skull StiffnessSeimetz, Christina N. (Virginia Tech, 2011-05-31)This thesis presents two studies related to head injury. The study presented in Chapter 1 reviewed findings of cranial movement in animal and human specimens and evaluate the validity of cranial movement due to manual manipulation in humans through engineering analysis. The study had two parts. In Part I, the literature was reviewed to determine the cranial motion in animals and humans. Engineering analysis was done in Part II to determine the amount of force necessary to cause cranial motion in the studies from Part I using skull stiffness values from published studies. Chapter 2 explored data collection methodologies used in frontal sled tests. Several data collection methodologies exist for collecting kinematic data, such as Vicon motion analysis, video analysis, and sensors. Head trajectories from motion data and accelerometer data were plotted up to maximum forward excursion of the head for eight frontal sled tests, four conducted at Virginia Tech and four at the University of Virginia. In addition, the percent difference between maximum forward excursion values from sensor and motion data were calculated. Finally, Chapter 3 discusses the literary contributions of each study and to which journals they will be submitted.
- Biomechanical Response of Human Volunteers and Surrogates in a Variety of Loading RegimesBeeman, Stephanie Marie (Virginia Tech, 2016-01-08)Unintentional injuries present a major threat to the health and welfare of humans. Over 120,000 deaths and over 30,000,000 non-fatal injuries are estimated annually in the United States. The leading causes of nonfatal injuries vary with age, but falls, motor vehicle collisions (occupants), and being struck by or against are among the top 4 leading causes of unintentional injury for all ages. The loading mechanism that cause forces to be transmitted to the body during these events can cause a wide assortment of injury types with a range of severities. Understanding the biomechanical response to loading in these environments can facilitate efforts in injury mitigation. Biomechanical responses can be quantified by performing controlled laboratory experiments with human volunteers and surrogates, such as anthropomorphic test devices (ATDs) and post mortem human surrogates (PMHSs). The overall objective of this dissertation is to quantify the biomechanical response to loading regimes present in motor vehicle collisions, falls, and when being struck by or against an object using human volunteers and surrogates. Specifically, the research will achieve the following: quantify the dynamic responses of human volunteers, Hybrid III ATD, and PMHSs in low-speed frontal sled tests; quantify the neck response of human volunteers and PMHSs in low-speed frontal sled tests; quantify the kinetic and kinematic responses of PMHSs and the Hybrid III ATD in high-speed frontal sled tests; characterize thoracic loading as a result of same level falls using a Hybrid III ATD; and quantify the ability of children to swing sword-like toys and the human kinematic response that could be anticipated as a result of forceful impact using a Hybrid III 6-year old head and neck.
- The Biomechanical Response of the Eye, Face, and Orbit to Primary Blast OverpressureAlphonse, Vanessa D. (Virginia Tech, 2015-12-08)Combat-related blast injuries are occurring more frequently with the increased use of improvised explosive devices in current military conflicts. Though much research has focused on how the body responds to the relatively low loading rates associated with blunt trauma, little is known regarding the response of the body to the higher loading rates associated with blast trauma. While soldiers are surviving once-lethal blast events due to enhanced protective equipment, injuries such as those to the eye and face that were once considered inconsequential, can now be detrimental to long-term healthcare costs and quality of life. Although it is suggested primary blast overpressure (i.e., the shock wave) can cause severe eye injuries, there remains few empirical data in the literature that confirms this. Adding to this, there are currently no testing standards to assess the effectiveness of personal protective equipment during blast exposure. Expanding upon traditional research techniques within the field of injury biomechanics, the research in this dissertation focuses specifically on developing experimental and physical models of the eye, face, and orbit for blast overpressure exposure. Foremost, a porcine eye model is used to quantify eye injury risk from blast overpressure exposure. Subsequently, these biomechanical data are used to develop a physical model of the eye that can be used in lieu of cadaver specimens for blunt and blast loading. Lastly, military spectacles and goggles are examined for effectiveness at protecting the eye during blast exposure. Combined with detailed computer-aided design geometries, these data can be used to validate computational models of the eye, orbit, and face to blast loading. Results from these tests support one theory that shock waves may enter the skull through the orbit, alluding to future work that is essential to more fully understanding the physiological response of the brain and ocular motor system to blast exposure. Ultimately, the experimental methods and analysis techniques disseminated herein serve as a framework for future experimental work related to blast and other high-rate loading scenarios.
- Biomechanical Responses of Human Surrogates under Various Frontal Loading Conditions with an Emphasis on Thoracic Response and Injury ToleranceAlbert, Devon Lee (Virginia Tech, 2018-06-04)Frontal motor vehicle collisions (MVCs) resulted in 10,813 fatalities and 937,000 injuries in 2014, which is more than any other type of MVC. In order to mitigate the injuries and fatalities resulting from MVCs, new safety restraint technologies and more biofidelic anthropomorphic test devices (ATDs) have been developed. However, the biofidelity of these new ATDs must be evaluated, and the mechanisms of injury must be understood in order to accurately predict injury. Evaluating the biomechanical response, injury mechanisms, and injury threshold of the thorax are particularly important because the thorax is one of the most frequently injured body regions in MVCs. Furthermore, sustaining a severe thoracic injury in an MVC significantly increases mortality risk. The overall objective of this dissertation was to evaluate the biomechanical responses of human surrogates under various frontal loading conditions. This objective was divided into three sub-objectives: 1) to evaluate the biofidelity of the current frontal impact ATDs, 2) to evaluate the effect of different safety restraints on occupant responses, and 3) to evaluate rib material properties with respect to sex, age, structural response, and loading history. In order to meet sub-objectives 1 and 2, full-scale frontal sled tests were performed on three different human surrogates: the 50th percentile male Hybrid III (HIII) ATD, the 50th percentile male Test Device for Human Occupant Restraint (THOR-M) ATD, and approximately 50th percentile male post-mortem human surrogates (PMHS). All surrogates were tested under three safety restraint conditions: knee bolster (KB), KB and steering wheel airbag (KB/SWAB), and knee bolster airbag and SWAB (KBAB/SWAB). The kinematic, lower extremity, abdominal, thoracic, and neck responses were then compared between surrogates and restraint conditions. In order to assess biofidelity, the ATD responses were compared to the PMHS responses. For both the kinematic and thoracic responses, the HIII and THOR-M had comparable biofideltiy. However, the HIII responses were slightly more biofidelic. The ATDs experienced similar lower extremity kinetics, but very different kinetics at the upper and lower neck due to differences in design. Evaluation of the different restraint conditions showed that the SWAB and KBAB both affected injury risk. The SWAB decreased head injury risk for all surrogates, and increased or decreased thoracic injury risk, depending on the surrogate. The KBAB decreased the risk of femur injury, but increased or decreased tibia injury risk depending on the surrogate and injury metric used to predict risk. In order to meet sub-objective 3, the tensile material properties of human rib cortical bone and the structural properties of whole ribs were quantified at strain rates similar to those observed in frontal impacts. The rib cortical bone underwent coupon tension testing, while the whole ribs underwent bending tests intended to simulate loading from a frontal impact. The rib material properties accounted for less than 50% of the variation observed in the whole rib structural properties, indicating that other factors, such as rib geometry, were also influencing the structural response of whole ribs. Age was significantly negatively correlated with the modulus, yield stress, failure strain, failure stress, plastic strain energy density, and total strain energy density. However, sex did not significantly influence any of the material properties. Cortical bone material properties were quantified from the ribs that underwent the whole rib bending tests and subject-matched, untested (control) ribs in order to evaluate the effect of loading history on material properties. Yield stress and yield strain were the only material properties that were significantly different between the previously tested and control ribs. The results of this dissertation can guide ATD and safety restrain design. Additionally, this dissertation provides human surrogate response data and rib material property data for the validation of finite element models, which can then be used to evaluate injury mitigation strategies for MVCs.
- The Biomechanics of Thoracic Skeletal ResponseKemper, Andrew R. (Virginia Tech, 2010-03-30)The National Highway Traffic Safety Administration (NHTSA) reported that in 2008 there were a total of 37,261 automotive related fatalities, 26,689 of which were vehicle occupants. It has been reported that in automotive collisions chest injuries rank second only to head injuries in overall number of fatalities and serious injuries. In frontal collisions, chest injuries constitute 37.6% of all AIS 3+ injuries, 46.3% of all AIS 4+ injuries, and 43.3% of all AIS 5+ injuries. In side impact collisions, it has been reported that thoracic injuries are the most common type of serious injury (AIS≥3) to vehicle occupants in both near side and far side crashes which do not involve a rollover. In addition, rib fractures are the most frequent type of thoracic injury observed in both frontal and side impact automotive collisions. Anthropomorphic test devices (ATDs), i.e. crash test dummies, and finite element models (FEMs) have proved to be integral tools in the assessment and mitigation of thoracic injury risk. However, the validation of both of these tools is contingent on the availability of relevant biomechanical data. In order to develop and validate FEMs and ATDs with improved thoracic injury risk assessment capabilities, it is necessary to generate biomechanical data currently not presented in the literature. Therefore, the purpose of this dissertation is to present novel material, structural, and global thoracic skeletal response data as well as quantify thoracic injury timing in both frontal belt loading and side impact tests using cadaveric specimens.
- The Crash Injury Risk to Rear Seated Passenger Vehicle OccupantsTatem, Whitney M. (Virginia Tech, 2020-01-22)Historically, rear seat occupants have been at a lower risk of serious injury and fatality in motor vehicle crashes than their front seat counterparts. However, many passive safety advancements that have occurred over the past few decades such as advanced airbag and seatbelt technology primarily benefit occupants of the front seat. Indeed, safety for front seat occupants has improved drastically in the 21st century, but has it improved so much that the front seat is now safer than the rear? Today, rear-seated occupants account for 10% of all passenger vehicle fatalities. In this era focused on achieving zero traffic deaths, the safety of rear-seated occupants must be further addressed. This dissertation analyzed U.S. national crash data to quantify the risk of injury and fatality to rear-seated passenger vehicle occupants while accounting for the influence of associated crash, vehicle, and occupant characteristics such as crash severity, vehicle model year, and occupant age/sex. In rear impacts, the risk of moderate-to-fatal injury was greater for rear-seated occupants than their front-seated counterparts. In high-severity rear impact crashes, catastrophic occupant compartment collapse can occur and carries with it a great fatality risk. In frontal impacts, there is evidence that the rear versus front seat relative risk of fatality has been increasing in vehicle model years 2007 and newer. Rear-seated occupants often sustained serious thoracic, abdomen, and/or head injuries that are generally related to seatbelt use. Seatbelt pretensioners and load limiters – commonplace technology in the front seating positions – aim to mitigate these types of injuries but are rarely provided as standard safety equipment in the rear seats of vehicles today. Finally, in side impacts, injury and fatality risks to rear- and front-seated occupants are more similar than in the other crash modes studied, though disparities in protection remain, especially in near-side vehicle-to-vehicle crashes. Finally, this work projects great injury reduction benefits if a rear seat belt reminder system were to be widely implemented in the U.S. vehicle fleet. This dissertation presents a comprehensive investigation of the factors that contribute to rear-seated occupant injury and/or fatality through retrospective studies on rear, front, and side impacts. The overall goal of this dissertation is to better quantify the current risk of injury to rear-seated occupants under a variety of crash conditions, compare this to the current risk to front-seated occupants, and, when possible, identify how exactly injuries are occurring and ways in which they may be prevented in the future. The findings can benefit automakers who seek to improve the effectiveness of rear seat safety systems as well as regulatory agencies seeking to improve was vehicle tests targeting rear seat passenger vehicle safety.
- Development and Implementation of Laboratory Test Methods for the Evaluation of Wearable Head Impact SensorsTyson, Abigail M. (Virginia Tech, 2016-01-08)With a rise in wearable sensor technology and the desire to investigate head impacts in previously unstudied groups, wearable head impact sensors have reached nation-wide popularity for their promising benefits to consumers and researchers. However, there are risks in relying on such technology before proper validation of its performance has been completed. Preliminary tests have found that current sensors vary widely in performance. The objective of this work was to develop and implement a test method for evaluation of wearable sensors in an ideal laboratory environment. A custom pendulum was used to impact a NOCSAE headform mounted on a Hybrid III neck. Sensors were tested under helmeted and unhelmeted conditions, according to their prescribed use. The headform was impacted at four locations, each at four impact energies ranging from 25 g to 100 g. Peak and time series headform kinematics output by each sensor were compared to accelerometers and angular rate sensors inside the headform. Average and standard deviations of peak sensor error and normalized RMS error were evaluated at each test condition to describe sensor performance. Requirements were set in the slope and coefficient of determination from linear regressions constrained through the origin to describe adequate sensor performance under ideal conditions. Sensors that met the requirement in at least one kinematic variable will be further evaluated in more realistic on-field and cadaver tests. The combination of all testing phases will be used to provide an overall sensor evaluation for both researchers and consumers.
- Development and Validation of a Finite Element Dummy Lower Limb Model for Under-body blast ApplicationsBaker, Wade Andrew (Virginia Tech, 2017-07-18)An under-body blast (UBB) refers to the use of a roadside explosive device to target a vehicle and its occupants. During Operation Iraqi Freedom, improvised explosive devices (IEDs) accounted for an estimated 63% of US fatalities. Furthermore, advancements in protective equipment, combat triage, and treatment have caused an increase in IED casualties surviving with debilitating injuries. Military vehicles have been common targets of IED attacks because of the potential to inflict multiple casualties. Anthropomorphic test devices (ATDs) are mechanical human surrogates designed to transfer loads and display kinematics similar to a human subject. ATDs have been used successfully by the automotive industry for decades to quantify human injury during an impact and assess safety measures. Currently the Hybrid III ATD is used in live-fire military vehicle assessments. However, the Hybrid III was designed for frontal impacts and demonstrated poor biofidelity in vertical loading experiments. To assess military vehicle safety and make informed improvements to vehicle design, a novel Anthropomorphic Test Device (ATD) was developed and optimized for vertical loading. ATDs, commonly referred to as crash dummies, are designed to estimate the risk of injuries to a human during an impact. The main objective of this study was to develop and validate a Finite Element (FE) model of the ATD lower limb.
- Driver Behavior in Car Following - The Implications for Forward Collision AvoidanceChen, Rong (Virginia Tech, 2016-07-13)Forward Collision Avoidance Systems (FCAS) are a type of active safety system which have great potential for rear-end collision avoidance. These systems use either radar, lidar, or cameras to track objects in front of the vehicle. In the event of an imminent collision, the system will warn the driver, and, in some cases, can autonomously brake to avoid a crash. However, driver acceptance of the systems is paramount to the effectiveness of a FCAS system. Ideally, FCAS should only deliver an alert or intervene at the last possible moment to avoid nuisance alarms, and potentially have drivers disable the system. A better understanding of normal driving behavior can help designers predict when drivers would normally take avoidance action in different situations, and customize the timing of FCAS interventions accordingly. The overall research object of this dissertation was to characterize normal driver behavior in car following events based on naturalistic driving data. The dissertation analyzed normal driver behavior in car-following during both braking and lane change maneuvers. This study was based on the analysis of data collected in the Virginia Tech Transportation Institute 100-Car Naturalistic Driving Study which involved over 100 drivers operating instrumented vehicles in over 43,000 trips and 1.1 million miles of driving. Time to Collision in both braking and lane change were quantified as a function of vehicle speed and driver characteristics. In general, drivers were found to brake and change lanes more cautiously with increasing vehicle speed. Driver age and gender were found to have significant influence on both time to collision and maximum deceleration during braking. Drivers age 31-50 had a mean braking deceleration approximately 0.03 g greater than that of novice drivers (age 18-20), and female drivers had a marginal increase in mean braking deceleration as compared to male drivers. Lane change maneuvers were less frequent than braking maneuvers. Driver-specific models of TTC at braking and lane change were found to be well characterized by the Generalized Extreme Value distribution. Lastly, driver's intent to change lanes can be predicted using a bivariate normal distribution, characterizing the vehicle's distance to lane boundary and the lateral velocity of the vehicle. This dissertation presents the first large scale study of its kind, based on naturalistic driving data to report driver behavior during various car-following events. The overall goal of this dissertation is to provide a better understanding of driver behavior in normal driving conditions, which can benefit automakers who seek to improve FCAS effectiveness, as well as regulatory agencies seeking to improve FCAS vehicle tests.
- Effect of Postmortem Time and Preservation Fluid on the Tensile Material Properties of Bovine Liver ParenchymaDunford, Kristin Marie (Virginia Tech, 2017-12-21)The liver is one of the most frequently injured abdominal organs in motor vehicle collisions. Although previous studies have quantified the tensile failure properties of human liver parenchyma at 48hrs postmortem, it is currently unknown how the material properties change between time of death and 48hrs postmortem. Therefore, the purpose of this study was to quantify the effects of postmortem degradation on the tensile material properties of bovine liver parenchyma when stored in DMEM or saline. Fourteen fresh bovine livers were obtained from a local slaughter house and stored in either DMEM or saline as large blocks, small blocks, or slices of tissue. Multiple parenchyma dog-bone samples from each liver were tested once to failure at three time points: ~6hrs, ~24hrs, and ~48hrs postmortem. The data were then analyzed to determine if there were significant changes in the material properties with respect to postmortem time. The results showed that the failure strain decreased significantly between 6hrs and 48hrs after death when stored as large blocks in saline. Conversely, neither the failure stress nor failure strain changed significantly with respect to postmortem time when stored as large blocks in DMEM. The modulus did not significantly change for tissue stored as large blocks in either fluid. Preliminary results indicated that reducing the tissue storage size had a negative effect on the material properties and cellular architecture. Overall, this study illustrated that the effects of postmortem liver degradation varied with respect to the preservation fluid, storage time, and storage block size.
- Effects of Sex, Strain Rate, and Age on the Compressive and Tensile Material Properties of Human Costal CartilageNowinski, Hannah Marie (Virginia Tech, 2022-07-08)The objective of this study was to evaluate the effects of sex, loading rate, and age on the compressive and tensile material properties of human costal cartilage over a wide range of subject ages and sexes. Cylindrical compression samples and dog-bone shaped tension samples were tested to failure on a material testing system using target strain rates of 0.005 strain/s and 0.5 strain/s. Compression data were obtained from forty (n = 40) subjects (M = 26, F = 14) ranging in age from 11 – 69 years (Avg. = 39.1 ± 18.2 yrs.), and matched loading rate data were obtained for thirty-four (n = 34) samples. Tension data were obtained from forty-one (n = 41) subjects (M = 30, F = 11) ranging in age from 10 – 59 years (Avg. = 32.9 ± 14.9 yrs.), and matched loading rate data were obtained for seventeen (n = 17) samples. For both compression and tension, load and sample deflection data were collected and used to calculate stress and strain. For the compression data, the toe region was fit using a second-order polynomial, and the toe transition stress, toe transition strain, second-order polynomial coefficient A, and second-order polynomial coefficient B were calculated. In addition, the elastic modulus, ultimate stress, ultimate strain, and strain energy density (SED) were also calculated for each test. For the tension data, only the elastic modulus, ultimate stress, ultimate strain, and SED were calculated for each test. There were no effects of sex on the material properties for either method of loading or strain rate. Therefore, male and female data were combined for the age and loading rate analyses. For compression, toe transition stress, toe transition strain, A, elastic modulus, ultimate stress, and SED were all found to be significantly higher at 0.5 strain/s compared to 0.005 strain/s. For tension, no material properties were found to differ with respect to loading rate. Regarding the effects of age, toe transition stress, toe transition strain, A, B, ultimate stress, ultimate strain and SED were found to significantly decrease with advancing age for the 0.005 strain/s compression data. At 0.5 strain/s, toe transition stress, toe transition strain, elastic modulus, ultimate stress, ultimate strain, and SED all significantly decreased with advancing age. For tension, ultimate stress, ultimate strain, and SED were found to significantly decrease with advancing age at 0.005 strain/s and 0.5 strain/s. Comparing the two loading modes, the ultimate stress, elastic modulus, and SED were significantly higher in compression than in tension. For the compression samples, sample density and percent calcification were also obtained for each sample using physical measurements and micro-CT scans, respectively. However, since there were only a few samples with large calcifications, no meaningful trends were found. This is the first study of its kind to analyze the effects of sex, loading rate, and age on both the compressive and tensile material properties on human costal cartilage from such a wide range of subject ages. The results from this study can be used to develop more accurate finite element models of the human body, which will allow researchers to better evaluate human occupant response and injury risk in motor vehicle collisions for both young and old individuals.
- Effects of Sex, Strain Rate, and Age on the Tensile and Compressive Material Properties of Human Rib Cortical BoneKatzenberger Jr, Michael J. (Virginia Tech, 2019-10-07)The objective of this study was to evaluate the effects of sex, loading rate, and age on the tensile and compressive material properties of human rib cortical bone over a wide range of subject demographics. Tension coupons were tested from sixty-one (n = 61) subjects (M = 32, F = 29) ranging in age from 17 to 99 years of age (Avg. = 56.4 +/- 26.2 yrs.). Compression samples were tested from thirty (n = 30) subjects (M = 19, F = 11) ranging in age from 18 to 95 years of age (Avg. = 49.0 +/- 23.9 yrs.). For each subject, one coupon/sample was tested to failure on a material testing system at a targeted strain rate of 0.005 strain/s, while a second coupon/sample was tested at 0.5 strain/s. A load cell was used to measure axial load for both the tension coupons and compression samples. An extensometer was used to measure displacement within the gage length of the tension coupons and a deflectometer was used to measure displacement of the compression samples. Tension data were obtained from fifty-eight (n = 58) coupons at 0.005 strain/s and fifty-eight (n = 58) coupons at 0.5 strain/s, with fifty-five (n = 55) matched pairs. Compression data were obtained from thirty (n = 30) compression samples at 0.005 strain/s and thirty (n = 30) samples at 0.5 strain/s. The elastic modulus, yield stress, yield strain, ultimate stress, elastic strain energy density (SED), plastic SED, and total SED were then calculated for each tensile and compression test. In addition, failure stress and failure strain were calculated for each tension test. There were no significant differences in the tensile material properties between sexes and no significant interactions between age and sex for either method of loading. In regard to the differences in tensile material properties with respect to loading rate, yield stress, yield strain, failure stress, ultimate stress, elastic SED, plastic SED, and total SED were significantly lower at 0.005 strain/s compared to 0.5 strain/s. All material properties were significantly lower at 0.005 strain/s compared to 0.5 strain/s in compression. Spearman correlation analyses showed that all tensile material properties had significant negative correlations with age at 0.005 strain/s except modulus. At 0.5 strain/s, all tensile material properties except yield strain had significant negative correlations with age. No significant correlations were observed in material properties with respect to advanced age in compression at either loading rate. Although the results revealed that the tensile material properties of human rib cortical bone varied significantly with respect to chronological age, the R2 values only ranged from 0.15 - 0.62, indicating that there may be other underlying variables that better account for the variance within a given population. Overall, this is the first study to analyze the effects of sex, loading rate, and age on tensile material properties of human rib cortical bone using a reasonably large sample size and the first study to test the compressive material properties of human rib cortical bone. The results of this study provide data that allows FEMs to better assess thoracic injury risk for all vehicle occupants. Additionally, this study provides the necessary data to more accurately model and assess differences in the material response of the rib cage for nearly all vehicle occupants of driving age.
- The Etiology of Impact Related Concussion for Catchers and Umpires in BaseballBeyer, Jeffrey Andrew (Virginia Tech, 2011-04-27)The information presented herein attempts to quantify the conditions surrounding concussive impacts from foul tips to the masks of catchers and umpires in baseball. Media reports of such occasions were researched on video and pitch speed data from the Pitch F/X system recorded to suggest speeds and locations at which impacts occur. To evaluate mask performance, a pneumatic-wheel, electric-motor driven pitching machine was utilized to shoot baseballs at the instrumented head of a Hybrid III dummy. Head accelerations were calculated from a 3-2-2-2 accelerometer array to allow for comparisons of linear and angular kinematics. 6 common masks (2-piece traditional-style and 1-piece hockey-style) were tested at 7 locations at 60 mph to determine the severity of each location. The center-eyebrow and chin locations were further tested at 84 mph. Speed and location data were used to evaluate a large sample of 25 masks to explore possible performance differences between manufacturer models, mask types and cage styles. The results of this study showed no significant difference between hockey-style and traditional-style mask performance. Titanium caged masks, although lighter than their steel counterparts, experienced higher linear accelerations. However, all masks experienced linear and angular accelerations well below commonly accepted injury thresholds. Yet, concussive injury has still occurred in the players and umpires that wear these masks. The work presented here can be used to help better understand these thresholds and influence the design, construction and evaluation of a new generation of masks that decrease the risk of concussions to the wearer.
- Evaluating the Potential of an Intersection Driver Assistance System to Prevent U.S. Intersection CrashesScanlon, John Michael (Virginia Tech, 2017-05-02)Intersection crashes are among the most frequent and lethal crash modes in the United States. Intersection Advanced Driver Assistance Systems (I-ADAS) are an emerging active safety technology which aims to help drivers safely navigate through intersections. One primary function of I-ADAS is to detect oncoming vehicles and in the event of an imminent collision can (a) alert the driver and/or (b) autonomously evade the crash. Another function of I-ADAS may be to detect and prevent imminent traffic signal violations (i.e. running a red light or stop sign) earlier in the intersection approach, while the driver still has time to yield for the traffic control device. This dissertation evaluated the capacity of I-ADAS to prevent U.S. intersection crashes and mitigate associated injuries. I-ADAS was estimated to have the potential to prevent up to 64% of crashes and 79% of vehicles with a seriously injured driver. However, I-ADAS effectiveness was found to be highly dependent on driver behavior, system design, and intersection/roadway characteristics. To generate this result, several studies were performed. First, driver behavior at intersections was examined, including typical, non-crash intersection approach and traversal patterns, the acceleration patterns of drivers prior to real-world crashes, and the frequency, timing, and magnitude of any crash avoidance actions. Second, two large simulation case sets of intersection crashes were generated from U.S. national crash databases. Third, the developed simulation case sets were used to examine I-ADAS performance in real-world crash scenarios. This included examining the capacity of a stop sign violation detection algorithm, investigating the sensor detection needs of I-ADAS technology, and quantifying the proportion of crashes and seriously injuries that are potentially preventable by this crash avoidance technology.
- Evaluation of Eye Injury Risk from Consumer FireworksAlphonse, Vanessa D.; Kemper, Andrew R. (Brain Injuries and Biomechanics Symposium, 2013-09-19)Eye injuries affect approximately two million people annually. Various experimental studies have been performed to evaluate potentially injurious conditions from blunt objects using animal and human cadaver eyes. Experimental data from these studies have been used to develop injury risk curves to predict eye injuries based on projectile parameters such as kinetic energy and normalized energy. Recently, intraocular pressure (IOP) has been correlated to injury risk, which allows eye injuries to be predicted if projectile characteristics are unknown. Additionally, the measurement of IOP and the association of IOP to injury risk in experimental tests has opened up the field to studying eye injury mechanisms from overpressure. The current manuscript presents recent experimental tests that evaluated the response of human cadaver eyes exposed to firework overpressure. Consumer fireworks serve as a model of low level blast, and provides a foundation to studying higher blast overpressures (i.e., that would be observed in military combat). Although some studies state that eye injury can result solely from primary blast (overpressure), there is no empirical evidence in the literature to support this. Future experimental studies should be conducted to assess this statement.
- Evaluation of Football Safety Techniques Utilizing Biomechanical MeasurementsDaniel, Ray W. II (Virginia Tech, 2014-08-19)In recent years, concussions and the effect this injury has on the human brain has been an area of concern for many people involved in sports. And perhaps rightfully so, as between 1.6 and 3.8 million people each year sustain a sports-related concussion in the United States. In the past, concussions have been solely linked to transient symptoms; however, recent research suggests that the injury can also result in long term neurocognitive impairment. Thus, there is much needed research to better understand concussions and assist in the development of safety techniques that will reduce the occurrence of such injury. Participants of youth football are at an extreme disadvantage as very little research has been conducted on this population. The research presented in this dissertation attempts to characterize head impact exposure of a variable subgroup of youth football, middle school football, in order to better understand concussions in youth. In addition to better understanding concussions, it is imperative that correct laboratory techniques are developed to accurately simulate realistic head impacts. This dissertation also presents results from the evaluation of current testing procedures that can be used for laboratory testing of sports equipment and simulation of actual field impacts. Evaluation of these techniques will further validate their ability to act as methods for both safety and research in sports injury. Thus, the overall goal of this dissertation is to provide results that will both further understanding of concussions and evaluate the realistic performance of laboratory techniques, influencing informed decisions to reduce the risk of concussions.
- Influence of Advanced Airbags on Injury Risk During Frontal CrashesChen, Rong (Virginia Tech, 2013-09-17)The combination of airbag and seatbelt is considered to be the most effective vehicle safety system. However, despite the widespread availability of airbags and a belt use rate of over 85% U.S. drivers involved in crashes continue to be at risk of serious thoracic injury. One hypothesis is that this risk may be due to the lack of airbag deployment or the airbag \'bottoming-out\' in some cases, causing drivers to make contact with the steering. The objective of this study is to determine the influence of various advanced airbags on occupant injury risk in frontal automobile crash. The analysis is based upon cases extracted from the National Automotive Sampling System Crashworthiness Data System (NASS/CDS) database for case years 1993-2011. The approach was to compare the frontal crash performance of advanced airbags against depowered airbags, first generation airbags, and vehicles with no airbag equipped. NASS/CDS steering wheel deformation measurements were used to identify cases in which thoracic injuries may have been caused due to steering wheel impact and deformation. The distributions of injuries for all cases were determined by body region and injury severity. These distributions were used to compare and contrast injury outcomes for cases with frontal airbag deployment for both belted and unbelted drivers. Among frontal crash cases with belted drivers, observable steering wheel deformation occurred in less than 4% of all cases, but accounted for 29% of all serious-to-fatally injured belted drivers and 28% of belted drivers with serious thoracic injuries (AIS3+). Similarly, observable steering wheel deformation occurred in approximately 13% of all cases with unbelted drivers involved in frontal crashes, but accounted for 58% of serious-to-fatally injured unbelted drivers and 66% of unbelted drivers with serious thoracic injuries. In a frontal crash, the factors which were statistically significant in the probability of steering wheel deformation were: longitudinal delta-V, driver weight, and driver belt status. Seatbelt pre-tensioner and load limiters were not significant factors in influencing steering wheel deformation. Furthermore, belted drivers in vehicles with no airbag equipped were found to have 3 times higher odds of deforming the steering wheel, as compared to driver in similar crash scenario. Similarly, unbelted drivers were found to have 2 times greater odds of deforming the steering wheel in vehicles with no airbags equipped as compared to vehicles with advanced airbag. The result also showed no statistically significant difference in the odds of deforming the steering wheel between depowered and advanced airbag. After controlling for crash severity, and driver weight, the study showed that crashes with steering wheel deformation results in greater odds of injury in almost all body regions for both belted and unbelted drivers. Moreover, steering wheel deformation is more likely to occur in unbelted drivers than belted drivers, as well as higher severity crashes and with heavier drivers. Another potential factor in influencing driver crash injury is the knee airbag. After comparing the odds of injury between vehicles with and without knee airbags equipped, belted drivers in vehicles equipped with knee airbag were found to have statistically smaller odds of injury in the thorax, abdomen, and upper extremity. Similarly, the findings showed that unbelted drivers benefited from knee airbag through statistically significant lower odds of chest and lower extremity injuries. However, the results should be considered with caution as the study is limited by its small sample of vehicles with knee airbags.
- Injury Biomechanics of the Human Eye During Blunt and Blast LoadingAlphonse, Vanessa Dawn (Virginia Tech, 2012-03-26)The research presented in this thesis investigates eye injuries caused by blunt impacts and blast overpressure. This research represents part of an ongoing investigation to accurately quantify and predict eye injuries and injury mechanisms for various loading schemes. It has been shown that blunt trauma can cause severe eye injuries but it remains undecided whether blast overpressure alone can cause eye injury. Presented herein are four experimental studies that quantify eye injuries and implement a technique for predicting injury risk. Isolated porcine or human eyes were subjected to various loading conditions consisting of blunt projectiles, water streams, remote control helicopter blades, and blast overpressure. All eyes were prepared in a similar manner that required the insertion of a miniature pressure sensor into the globe through the optic nerve. This sensor measured intraocular pressure throughout each event. Using previously published injury risk curves, this intraocular pressure data was used to predict the injury risk for four eye injuries: hyphema, lens damage, retinal damage, and globe rupture. Injuries sustained were quantified upon direct inspection of the globe following testing. No serious eye injuries were observed for any of the tests and all tests resulted in low predicted injury risks consistent with the lack of observed injury. The research presented in this thesis provides a robust low injury level dataset for eye injuries. This data could be useful for designing and validating computational models and anthropomorphic test device eyes, and serves as a basis for future work with more dangerous projectiles and higher pressure levels.
- Investigating Injury Pathology of Blast-induced Polytrauma and Assessing the Therapeutic Role of Hemostatic Nanoparticles after Blast ExposureHubbard, W. Brad (Virginia Tech, 2016-09-26)Explosions cause the majority of injuries in the current conflicts, accounting for 79% of combat related injuries (Ramasamy et al. 2008). Blast overpressure from explosions can cause barotrauma to the lungs and the brain. Blast-induced mild traumatic brain injury has been labeled the "signature wound" of current military conflicts in Iraq and Afghanistan (Snell and Halter 2010). In addition to elevated number of blast-induced traumatic brain injuries due to increased military conflicts overseas and the usage of improvised explosive devices, the incidence of blast-induced polytrauma has risen due to the prevalence of terrorist events around the world (Arnold et al. 2004, Rodoplu et al. 2004). Blast-induced polytrauma is a major concern as lung injury can cause immediate mortality and brain injury causes long-lasting neurocognitive impairment. There is a critical lack of understanding the pathology of blast-induced polytrauma since the needs are multifaceted and therefore few options for treatment. Thus, the research presented in this dissertation required the development of a military-relevant blast polytrauma model to examine injury pathology and subsequently study the effects of hemostatic nanoparticle therapy after blast-induced polytrauma. The pre-clinical model was characterized and static overpressure thresholds were determined for lethality risk. It was confirmed to have many of the classic hallmarks of primary blast lung injury (PBLI), as well as blast-induced neurotrauma (BINT) (Clemedson 1950). Global hemorrhaging was found in the lungs and well as reduced oxygen saturation. Markers of astrogliosis and blood-brain barrier disruption were examined in the amygdala after blast. The novel nanoparticle configuration (hemostatic dexamethasone-loaded nanoparticles (hDNP) functionalized with a peptide that binds with activated platelets) was investigated and hypothesized to increase survival, reduce cellular injury and reduce anxiety-like disorders after blast polytrauma. After investigating hDNP, it was found that the hDNP treatment benefited survival percentage after injury as well as reduced percent hemorrhage in the lungs and improved physiology. Elevated anxiety parameters found in the controls were lower as compared to the hDNP group. Glial fibrillary acidic protein (GFAP) and cleaved caspase-3 were significantly elevated in the controls compared to the hDNP group in the amygdala. SMI-71 was also significantly elevated with the hDNP and hemostatic nanoparticle (hNP) treatments, similar to sham. In addition to the nanoparticles offering immediate life-saving qualities, administration of hemostatic nanoparticles improved amygdala pathology attributed to secondary mechanisms of blast injury, including blood-brain barrier disruption. This model of polytrauma can serve as a foundation for detailed pathological studies as well as testing therapeutics for injury modalities. References (Abstract) Arnold, J. L., P. Halpern, M. C. Tsai and H. Smithline (2004). "Mass casualty terrorist bombings: a comparison of outcomes by bombing type." Ann Emerg Med 43(2): 263-273. Clemedson, C. J., Granstom, S.A. (1950). "Studies on the genesis of "rib markings" in lung blast injury." Acta Physiol Scand. 21: 131-144. Ramasamy, A., S. E. Harrisson, J. C. Clasper and M. P. Stewart (2008). "Injuries from roadside improvised explosive devices." J Trauma 65(4): 910-914. Rodoplu, U., Arnold, J. L., Tokyay, R., Ersoy, G., Cetiner, S., Yucel, T. (2004) "Mass-casualty terrorist bombings in Istanbul, Turkey, November 2003: reports of the events and the prehospital emergency response." Prehosp Disaster Med 19(2):133-145. Snell, F. I. and M. J. Halter (2010). "A signature wound of war: mild traumatic brain injury." J Psychosoc Nurs Ment Health Serv 48(2): 22-28.
- Investigating the Thoracic Biomechanical Responses of Rear Seated 50th Percentile Male Anthropomorphic Test Devices and Post Mortem Human Surrogates During Frontal Motor Vehicle CollisionsBianco, Samuel Thomas (Virginia Tech, 2023-07-14)Frontal motor vehicle collisions (MVCs) account for the majority of injuries and fatalities in MVCs according to the Fatality Analysis Reporting Systems (FARS). One of the most commonly injured regions of the body during MVCs is the thorax. While there are fewer adult passengers riding in the rear seat compared to the front seat, the number of adults in the rear seat may increase dramatically in the near future with the rise of ridesharing services and highly automated vehicles (HAVs). With the increase in exposure for adults riding in the rear seat, the safety of these passengers needs to be evaluated. Previous research has shown that occupant protection in the rear seat is disproportionately lower than that of the front seat in modern vehicles due to the focus on front seat occupants in both regulatory and market-driven crash tests. This has resulted in many of the occupant safety systems, e.g., pretensioners (PT), load limiters (LL), and airbags, being widely available in the front seat, but sparsely available in the rear seat. Anthropomorphic test devices (ATDs) have been developed to investigate occupant safety during frontal MVCs and can be utilized in the investigation of rear seat occupant injuries. However, the biofidelity and injury risk criteria used for these ATDs has only been validated when seated in the front seat. To validate the response and injury risk predictions of existing frontal ATDs in the rear seat it is necessary to generate new biomechanical data in the rear seat of modern vehicles. The purpose of this work is to quantify the biomechanical responses of two frontal ATDs, i.e., the Hybrid III and THOR-50M 50th percentile male ATDs, and 50th percentile male post mortem human surrogates (PMHS) seated in the rear seat of modern vehicles, which have various seat geometries and restraint types, during frontal MVCs. Emphasis is placed on comparisons between the thoracic responses of the three human surrogates e.g., thoracic deflection time histories, and thoracic injury risks, i.e., ATD injury risk prediction versus instances of PMHS injuries. A series of twenty-four frontal sled tests were first conducted with the HIII and THOR-50M ATDs seated in the rear seats of seven vehicle test bucks with varying seat geometries and two different restraint types. Three vehicles had advanced restraints while four had conventional restraints. Three different crash pulses were used derived from vehicle specific US New Car Assessment Program frontal crash data: Scaled (32kph), Generic (32kph), and NCAP85 (56kph). Thoracic injury metrics were not exceeded in the lower severity pulses for either ATD but were exceeded during some of the high severity tests. A matched comparison analysis between a front and rear seated Hybrid III 50th percentile male ATD is presented second that highlights the disparities between front and rear seat iii occupant safety of modern vehicles during frontal MVCs. The Hybrid III ATD data were used for this comparison. Thoracic injury risk was found to be higher for the rear seated HIII across all vehicles, while thoracic acceleration was lower in the rear than the front for some vehicles. PMHS thoracic responses and injury risk equations were then evaluated in four of the vehicles used for the ATD tests using the high severity sled pulse, i.e., NCAP85 (56kph). Thoracic acceleration and normalized deflection values were higher in vehicles with conventional restraints, and the location of maximum deflection was always inboard of the sternum. The resulting thoracic injuries ranged from AIS 3 to AIS 5. Additionally, there were a larger average number of rib fractures in vehicles with conventional restraints versus advanced restraints. A multi-point deflection injury risk equation predicted injury the best. However the less censored rib fracture data that were obtained suggest that all three of the injury equations evaluated could be improved. Lastly, the PMHS data were used to assess the similarities in thoracic response between the ATDs and PMHS. An objective rating metric was used for the response comparison. The HIII had a slightly better average score than the THOR-50M; however, the THOR-50M had a more biofidelic kinematic response during the tests. This analysis furthers the understanding of the effect of different occupant protection systems on thoracic injury risk in a rear seat environment and the biofidelity of frontal 50th percentile male ATDs in the rear seat.