Browsing by Author "Khandpur, Rupinder P."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Augmenting Dynamic Query Expansion in Microblog TextsKhandpur, Rupinder P. (Virginia Tech, 2018-08-17)Dynamic query expansion is a method of automatically identifying terms relevant to a target domain based on an incomplete query input. With the explosive growth of online media, such tools are essential for efficient search result refining to track emerging themes in noisy, unstructured text streams. It's crucial for large-scale predictive analytics and decision-making, systems which use open source indicators to find meaningful information rapidly and accurately. The problems of information overload and semantic mismatch are systemic during the Information Retrieval (IR) tasks undertaken by such systems. In this dissertation, we develop approaches to dynamic query expansion algorithms that can help improve the efficacy of such systems using only a small set of seed queries and requires no training or labeled samples. We primarily investigate four significant problems related to the retrieval and assessment of event-related information, viz. (1) How can we adapt the query expansion process to support rank-based analysis when tracking a fixed set of entities? A scalable framework is essential to allow relative assessment of emerging themes such as airport threats. (2) What visual knowledge discovery framework to adopt that can incorporate users' feedback back into the search result refinement process? A crucial step to efficiently integrate real-time `situational awareness' when monitoring specific themes using open source indicators. (3) How can we contextualize query expansions? We focus on capturing semantic relatedness between a query and reference text so that it can quickly adapt to different target domains. (4) How can we synchronously perform knowledge discovery and characterization (unstructured to structured) during the retrieval process? We mainly aim to model high-order, relational aspects of event-related information from microblog texts.
- ‘Beating the news’ with EMBERS: Forecasting Civil Unrest using Open Source IndicatorsRamakrishnan, Naren; Butler, Patrick; Self, Nathan; Khandpur, Rupinder P.; Saraf, Parang; Wang, Wei; Cadena, Jose; Vullikanti, Anil Kumar S.; Korkmaz, Gizem; Kuhlman, Christopher J.; Marathe, Achla; Zhao, Liang; Ting, Hua; Huang, Bert; Srinivasan, Aravind; Trinh, Khoa; Getoor, Lise; Katz, Graham; Doyle, Andy; Ackermann, Chris; Zavorin, Ilya; Ford, Jim; Summers, Kristen; Fayed, Youssef; Arredondo, Jaime; Gupta, Dipak; Mares, David; Muthia, Sathappan; Chen, Feng; Lu, Chang-Tien (2014)We describe the design, implementation, and evaluation of EMBERS, an automated, 24x7 continuous system for forecasting civil unrest across 10 countries of Latin America using open source indicators such as tweets, news sources, blogs, economic indicators, and other data sources. Unlike retrospective studies, EMBERS has been making forecasts into the future since Nov 2012 which have been (and continue to be) evaluated by an independent T&E team (MITRE). Of note, EMBERS has successfully forecast the uptick and downtick of incidents during the June 2013 protests in Brazil. We outline the system architecture of EMBERS, individual models that leverage specific data sources, and a fusion and suppression engine that supports trading off specific evaluation criteria. EMBERS also provides an audit trail interface that enables the investigation of why specific predictions were made along with the data utilized for forecasting. Through numerous evaluations, we demonstrate the superiority of EMBERS over baserate methods and its capability to forecast significant societal happenings.
- Determining Relative Airport Threats from News and Social MediaKhandpur, Rupinder P.; Ji, Taoran; Ning, Yue; Zhao, Liang; Lu, Chang-Tien; Smith, Erik R.; Adams, Christopher; Ramakrishnan, Naren (AAAI, 2017)Airports are a prime target for terrorist organizations, drug traffickers, smugglers, and other nefarious groups. Traditional forms of security assessment are not real-time and often do not exist for each airport and port of entry. Thus, homeland security professionals must rely on measures of attractiveness of an airport as a target for attacks.We present an open source indicators approach, using news and social media, to conduct relative threat assessment, i.e., estimating if one airport is under greater threat than another. The three ingredients of our approach are a dynamic query expansion algorithm for tracking emerging threat-related chatter, news-Twitter reciprocity modeling for capturing interactions between social and traditional media, and a ranking scheme to provide an ordered assessment of airport threats. Case studies based on actual aviation incidents are presented.