Browsing by Author "Kim, Dong-Yun"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Adaptive Threshold Method for Monitoring Rates in Public Health SurveillanceGan, Linmin (Virginia Tech, 2010-04-30)We examine some of the methodologies implemented by the Centers for Disease Control and Prevention's (CDC) BioSense program. The program uses data from hospitals and public health departments to detect outbreaks using the Early Aberration Reporting System (EARS). The EARS method W2 allows one to monitor syndrome counts (W2count) from each source and the proportion of counts of a particular syndrome relative to the total number of visits (W2rate). We investigate the performance of the W2r method designed using an empiric recurrence interval (RI) in this dissertation research. An adaptive threshold monitoring method is introduced based on fitting sample data to the underlying distributions, then converting the current value to a Z-score through a p-value. We compare the upper thresholds on the Z-scores required to obtain given values of the recurrence interval for different sets of parameter values. We then simulate one-week outbreaks in our data and calculate the proportion of times these methods correctly signal an outbreak using Shewhart and exponentially weighted moving average (EWMA) charts. Our results indicate the adaptive threshold method gives more consistent statistical performance across different parameter sets and amounts of baseline historical data used for computing the statistics. For the power analysis, the EWMA chart is superior to its Shewhart counterpart in nearly all cases, and the adaptive threshold method tends to outperform the W2 rate method. Two modified W2r methods proposed in the dissertation also tend to outperform the W2r method in terms of the RI threshold functions and in the power analysis.
- Control Charts with Missing ObservationsWilson, Sara R. (Virginia Tech, 2009-04-03)Traditional control charts for process monitoring are based on taking samples from the process at regular time intervals. However, it is often possible in practice for observations, and even entire samples, to be missing. This dissertation investigates missing observations in Exponentially Weighted Moving Average (EWMA) and Multivariate EWMA (MEWMA) control charts. The standardized sample mean is used since this adjusts the sample mean for the fact that part of the sample may be missing. It also allows for constant control limits even though the sample size varies randomly. When complete samples are missing, the weights between samples should also be adjusted. In the univariate case, three approaches for adjusting the weights of the EWMA control statistic are investigated: (1) ignoring missing samples; (2) adding the weights from previous consecutive missing samples to the current sample; and (3) increasing the weights of non-missing samples in proportion, so that the weights sum to one. Integral equation and Markov chain methods are developed to find and compare the statistical properties of these charts. The EI chart, which adjusts the weights by ignoring the missing samples, has the best overall performance. The multivariate case in which information on some of the variables is missing is also examined using MEWMA charts. Two methods for adjusting the weights of the MEWMA control statistic are investigated and compared using simulation: (1) ignoring all the data at a sampling point if the data for at least one variable is missing; and (2) using the previous EWMA value for any variable for which all the data are missing. Both of these methods are examined when the in-control covariance matrix is adjusted at each sampling point to account for missing observations, and when it is not adjusted. The MS control chart, which uses the previous value of the EWMA statistic for a variable if all of the data for that variable is missing at a sampling point, provides the best overall performance. The in-control covariance matrix needs to be adjusted at each sampling point, unless the variables are independent or only weakly correlated.
- Diagnostics after a Signal from Control Charts in a Normal ProcessLou, Jianying (Virginia Tech, 2008-09-04)Control charts are fundamental SPC tools for process monitoring. When a control chart or combination of charts signals, knowing the change point, which distributional parameter changed, and/or the change size helps to identify the cause of the change, remove it from the process or adjust the process back in control correctly and immediately. In this study, we proposed using maximum likelihood (ML) estimation of the current process parameters and their ML confidence intervals after a signal to identify and estimate the changed parameters. The performance of this ML diagnostic procedure is evaluated for several different charts or chart combinations for the cases of sample sizes and , and compared to the traditional approaches to diagnostics. None of the ML and the traditional estimators performs well for all patterns of shifts, but the ML estimator has the best overall performance. The ML confidence interval diagnostics are overall better at determining which parameter has shifted than the traditional diagnostics based on which chart signals. The performance of the generalized likelihood ratio (GLR) chart in shift detection and in ML diagnostics is comparable to the best EWMA chart combination. With the application of the ML diagnostics naturally following a GLR chart compared to the traditional control charts, the studies of a GLR chart during process monitoring can be further deepened in the future.
- GLR Control Charts for Monitoring the Mean Vector or the Dispersion of a Multivariate Normal ProcessWang, Sai (Virginia Tech, 2012-02-01)In many applications, the quality of process outputs is described by more than one characteristic variable. These quality variables usually follow a multivariate normal (MN) distribution. This dissertation discusses the monitoring of the mean vector and the covariance matrix of MN processes. The first part of this dissertation develops a statistical process control (SPC) chart based on a generalized likelihood ratio (GLR) statistic to monitor the mean vector. The performance of the GLR chart is compared to the performance of the Hotelling Χ² chart, the multivariate exponentially weighted moving average (MEWMA) chart, and a multi-MEWMA combination. Results show that the Hotelling Χ² chart and the MEWMA chart are only effective for a small range of shift sizes in the mean vector, while the GLR chart and some carefully designed multi-MEWMA combinations can give similarly better overall performance in detecting a wide range of shift magnitudes. Unlike most of these other options, the GLR chart does not require specification of tuning parameter values by the user. The GLR chart also has the advantage in process diagnostics: at the time of a signal, estimates of change-point and out-of-control mean vector are immediately available to the user. All these advantages of the GLR chart make it a favorable option for practitioners. For the design of the GLR chart, a series of easy to use equations are provided to users for calculating the control limit to achieve the desired in-control performance. The use of this GLR chart with a variable sampling interval (VSI) scheme has also been evaluated and discussed. The rest of the dissertation considers the problem of monitoring the covariance matrix. Three GLR charts with different covariance matrix estimators have been discussed. Results show that the GLR chart with a multivariate exponentially weighted moving covariance (MEWMC) matrix estimator is slightly better than the existing method for detecting any general changes in the covariance matrix, and the GLR chart with a constrained maximum likelihood estimator (CMLE) gives much better overall performance for detecting a wide range of shift sizes than the best available options for detecting only variance increases.
- Likelihood-based testing and model selection for hazard functions with unknown change-pointsWilliams, Matthew Richard (Virginia Tech, 2011-03-30)The focus of this work is the development of testing procedures for the existence of change-points in parametric hazard models of various types. Hazard functions and the related survival functions are common units of analysis for survival and reliability modeling. We develop a methodology to test for the alternative of a two-piece hazard against a simpler one-piece hazard. The location of the change is unknown and the tests are irregular due to the presence of the change-point only under the alternative hypothesis. Our approach is to consider the profile log-likelihood ratio test statistic as a process with respect to the unknown change-point. We then derive its limiting process and find the supremum distribution of the limiting process to obtain critical values for the test statistic. We first reexamine existing work based on Taylor Series expansions for abrupt changes in exponential data. We generalize these results to include Weibull data with known shape parameter. We then develop new tests for two-piece continuous hazard functions using local asymptotic normality (LAN). Finally we generalize our earlier results for abrupt changes to include covariate information using the LAN techniques. While we focus on the cases of no censoring, simple right censoring, and censoring generated by staggered-entry; our derivations reveal that our framework should apply to much broader censoring scenarios.
- Parametric Resampling Methods for Retrospective Changepoint AnalysisDuggins, Jonathan William (Virginia Tech, 2010-06-25)Changepoint analysis is a useful tool in environmental statistics in that it provides a methodology for threshold detection and modeling processes subject to periodic changes in the underlying model due to anthropogenic effects or natural phenomena. Several applications of changepoint analysis are investigated here. The use of inappropriate changepoint detection methods is first discussed and the need for a simple, flexible, correct method is established and such a method is proposed for the mean-shift model. Data from the Everglades, Florida, USA is used to showcase the methodology in a real-world setting. An extension to the case of time-series data represented via transition matrices is presented as a result of joint work with Matt Williams (Department of Statistics, Virginia Tech) and rainfall data from Kenya, Africa is presented as a case-study. Finally the multivariate changepoint problem is addressed by a two-stage approach beginning with dimension reduction via principal component analysis (PCA). After the dimension reduction step the location of the changepoint in principal component space is estimated and assuming at most one change in a mean-shift setting, all possible sub-models are investigated.
- Surveillance of Poisson and Multinomial ProcessesRyan, Anne Garrett (Virginia Tech, 2011-03-18)As time passes, change occurs. With this change comes the need for surveillance. One may be a technician on an assembly line and in need of a surveillance technique to monitor the number of defective components produced. On the other hand, one may be an administrator of a hospital in need of surveillance measures to monitor the number of patient falls in the hospital or to monitor surgical outcomes to detect changes in surgical failure rates. A natural choice for on-going surveillance is the control chart; however, the chart must be constructed in a way that accommodates the situation at hand. Two scenarios involving attribute control charting are investigated here. The first scenario involves Poisson count data where the area of opportunity changes. A modified exponentially weighted moving average (EWMA) chart is proposed to accommodate the varying sample sizes. The performance of this method is compared with the performance for several competing control chart techniques and recommendations are made regarding the best preforming control chart method. This research is a result of joint work with Dr. William H. Woodall (Department of Statistics, Virginia Tech). The second scenario involves monitoring a process where items are classified into more than two categories and the results for these classifications are readily available. A multinomial cumulative sum (CUSUM) chart is proposed to monitor these types of situations. The multinomial CUSUM chart is evaluated through comparisons of performance with competing control chart methods. This research is a result of joint work with Mr. Lee J. Wells (Grado Department of Industrial and Systems Engineering, Virginia Tech) and Dr. William H. Woodall (Department of Statistics, Virginia Tech).
- A Test For An Abrupt Change In Weibull Hazard Functions With Staggered Entry And Type I CensoringWilliams, Matthew R.; Kim, Dong-Yun (Virginia Tech, 2010)We consider a test of an unknown change-point in a Weibull hazard function. We assume that data are subject to staggered entry and type I censoring. We formulate the profile log-likelihood ratio test statistic as a function of the changepoint and derive the limiting Gaussian process. From the supremum of the limiting process, we determine critical values and study the power of the test through simulation. We demonstrate this method using real data from a clinical study for the treatment of chronic granulomatous disease.