Browsing by Author "Kizjakina, Karina"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Chemical Mechanism of UDP-Galactopyranose Mutase from Trypanosoma cruzi: A Potential Drug Target against Chagas' DiseaseOppenheimer, Michelle; Lisa Valenciano, Ana; Kizjakina, Karina; Qi, Jun; Sobrado, Pablo (PLOS, 2012-03-20)UDP-galactopyranose mutase (UGM) is a flavoenzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, the precursor of galactofuranose (Galf). Galf is found in several pathogenic organisms, including the parasite Trypanosoma cruzi, the causative agent of Chagas' disease. Galf) is important for virulence and is not present in humans, making its biosynthetic pathway an attractive target for the development of new drugs against T. cruzi. Although UGMs catalyze a non-redox reaction, the flavin must be in the reduced state for activity and the exact role of the flavin in this reaction is controversial. The kinetic and chemical mechanism of TcUGM was probed using steady state kinetics, trapping of reaction intermediates, rapid reaction kinetics, and fluorescence anisotropy. It was shown for the first time that NADPH is an effective redox partner of TcUGM. The substrate, UDP-galactopyranose, protects the enzyme from reacting with molecular oxygen allowing TcUGM to turnover ∼1000 times for every NADPH oxidized. Spectral changes consistent with a flavin iminium ion, without the formation of a flavin semiquinone, were observed under rapid reaction conditions. These data support the proposal of the flavin acting as a nucleophile. In support of this role, a flavin-galactose adduct was isolated and characterized. A detailed kinetic and chemical mechanism for the unique non-redox reaction of UGM is presented.
- Serum Stable Carbohydrate-Oligoethyleneamine Copolymers for Nucleic Acid DeliveryKizjakina, Karina (Virginia Tech, 2011-01-20)The delivery of nucleic acids at the tissue and cellular levels remains one of the major hurdles in this scientific area. Since nucleic acids are bulky macromolecules and unstable in the presence of nucleases, vehicles are required to compact them into nanosized particles, offer protection from degradation in vivo, and release the therapeutic cargo at the desired location. Polycationic vehicles are good candidates for these purposes since they can be chemically modified to tune the desired properties in nanoparticle formulations. We designed a family of trehalose-oligoethyleneamine copolymers that showed promising plasmid DNA (pDNA) transfection results in the presence of serum proteins. A diazidotrehalose monomer was copolymerized with linear oligoethyleneamines of varying length and containing alkyne end-groups via step-growth Cu(I)-catalyzed azide-alkyne cycloaddition polymerization resulting in a series of trehalose copolymers with a range of secondary amines (from 4 to 6) within the polymer backbone. Upon electrostatic complexation of the polycations and pDNA in aqueous media, nanosized particles were formed, and their sizes and zeta-potentials were characterized via dynamic light scattering (DLS). The glycopolymers were tested for pDNA binding, toxicity, cellular uptake, and transfection efficiency in vitro. Characterization of these polymers revealed a significant influence of minor structural modifications on bioactivity. In general, all of the polymers efficiently bind pDNA at low nitrogen to phosphate (N/P) ratios forming nanoparticles below 100 nm in size and demonstrated cellular uptake and transfection. Polymers comprised of trehalose moieties and four secondary amines in the repeat unit showed the greatest promise in pDNA delivery in vitro. Because of its large hydration volume, we hypothesize that trehalose contributes to particle stabilization in serum. The trehalose-based polymers with four secondary amines (Tr4) were subsequently modified with PEG (5kDa). This modification lead to the development of well-defined polymeric structures with PEG moieties selectively incorporated at the ends of linear trehalose-oligoethyleneamine polycations. The study of the effect of this modification on bioactivity revealed that there were no significant difference in the toxicity profiles within this series of PEGylated and non-PEGylated materials; however, overall results suggest that both modified and unmodified trehalose-oligoethyleneamine copolymers have a great promise for stem cell-based and regenerative therapies.