Browsing by Author "Klemba, Michael Wade"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Domain-based Bioinformatics Analysis and Molecular Insights for the Autoregulatory Mechanism of Phafin2Hasan, Mahmudul (Virginia Tech, 2024-08-19)Phafin2, an adaptor protein, is involved in various cellular processes, such as apoptosis, autophagy, endosomal cargo transportation, and macropinocytosis. Two domains, namely, PH and FYVE, contribute to Phafin2's cell membrane binding. Phafin2 also contains a poly aspartic acid (polyD) motif in its C-terminal region that can specifically autoinhibit the PH domain binding to membrane phosphatidylinositol 3-phosphate (PtdIns3P). Firstly, the study investigated the domain-based evolutionary pattern of PH, FYVE, and polyD motif of Phafin2 among its orthologs and Phafin2- like proteins. Using different bioinformatics tools and resources, it was concluded that the polyD motif only evolved in Phafin2 and PH- or both PH-FYVE-containing proteins of animals, highlighting the association in cellular functions that might have evolved uniquely in animals. Moreover, PH domain-free FYVE-containing proteins lack polyD motifs. Secondly, intramolecular autoregulatory and membrane binding properties of Phafin2 were studied by employing liposome co-sedimentation assay, isothermal titration calorimetry, and nuclear magnetic resonance spectroscopy. The residues Gly38, Lys45, Leu45, Lys51, Ala52, and Arg53 of the PH domain form a positively charged binding pocket that can bind the negatively charged polyD motif. The mutated Phafin2 PH domain (K51A/R53C and R53C) was unable to bind to synthetic polyD peptides, establishing the significance of those residues for the interaction between the PH domain and polyD motif. Moreover, the study also concluded that Phafin2-mediated membrane binding is not curvature-dependent.
- Dynamics and Electrostatics of Membrane Proteins using Polarizable Molecular Dynamics SimulationsMontgomery, Julia Mae (Virginia Tech, 2024-06-25)Membrane proteins are critical to many biological processes, including molecular transport, signal transduction, and cellular interactions. Through the use of molecular dynamics (MD) simulations, we are able to model this environment at an atomistic scale. However, traditionally used nonpolarizable force fields (FF) are thought to model the unique dielectric gradient posed by the lipid environment with a limited accuracy due to the mean field approximation of charge. Advancements in polarizable FFs and computing efficiency has enabled the explicit modeling of polarization responses and charge distribution, enabling a deeper understanding of the electrostatics driving these processes. Through the use of the Drude FF, we study three specific model systems to understand where explicit polarization is important in describing membranes and membrane proteins. These studies sought to answer the questions: (1) How does explicit electronic polarization impact small molecule permeation and localization preference?, (2) What electrostatic interactions underlie membrane protein secondary structure?, and (3) How do conformational changes propagate between microswitches in G-Protein Coupled Receptors? In this work, we show small molecule dipole moments changing as a function of localization in the bilayer. Additionally, we show differences in the free energy surfaces of permeation for aromatic, polar, and negatively charged species reliant upon force field used. For secondary structure, we showed key interactions which aided to stabilize model helices in bilayers. Finally, we showed potential inductive effects of key microswitch residues underlying prototypical G-Protein coupled receptor activation. This dissertation has helped to show the importance of including explicit polarization in membrane protein systems, especially when considering interactions at the interface and modeling species with charge. This work enables a refined view of the electrostatics occurring in membranes and membrane protein systems, and in the future, can be used as a basis for methodologies in computer aided drug design efforts.
- Functional Characterization of Serine Hydrolases Mediating Lipid Metabolism and Protein Depalmitoylation in Asexual Stage Plasmodium FalciparumLiu, Jiapeng (Virginia Tech, 2023-06-05)Malaria is an infectious disease caused by Plasmodium parasites and transferred by Anopheles mosquitos. Due to Artemisinin resistance, new druggable targets identification and new drug development are urgently needed. Serine hydrolases (SHs) are one of the largest classes of enzymes having important roles in life processes. The deadliest malaria parasite, P. falciparum, encodes more than 50 SHs including proteases, lipases, esterase and others, while only several of them have been characterized. The study of uncharacterized SHs will shed light on future drug development to treat malaria. In this study, we applied chemical biology and genetic approaches to identify SHs important for the pathogenic asexual stage growth of P. falciparum parasites. We mainly focused on a depalmitoylase essential for merozoite invasion and lysophospholipases (LPLs) essential for acquiring fatty acids (FAs) from the host. Identifying essential metabolic enzymes will benefit the treatment to malaria. We focused on metabolic SHs and identified two SHs were refractory to knock out. We studied a likely essential SH named PfABHD17A, which is a human depalmitoylase homolog. PfABHD17A is localized on the rhoptry, an organelle essential for invasion. We expressed the recombinant PfABHD17A, conducted inhibitor screen and discovered that human depalmitoylase inhibitor ML211 inhibits PfABHD17A in vitro. ML211 inhibits merozoite invasion but not egress, which together with the localization of PfABHD17A on the rhoptries, suggested that PfABHD17A is essential in merozoite invasion. We also purified PfABHD17A and verified that PfABHD17A may exhibit depalmitoylase activity in vitro. LPLs are important for asexual stage parasites acquiring FAs from the host. The P. falciparum genome includes 17 putative LPLs while LPLs responsible for hydrolyzing FA from lysophosphatidylcholine (LPC) in the asexual stage are currently unknown. Using a chemical biology approach, we identified serine hydrolase inhibitor AKU-010 inhibits LPC hydrolysis effectively. Using activity-based protein profiling (ABPP) and genetic approaches, we identified that AKU-010 inhibits a series of SHs including Exported Lipases (XLs), Exported Lipases Homolog (XLH) and Plasmodium falciparum prodrug activation and resistance esterase (PfPARE). We generated a series of knockout parasite lines on the AKU-010 targets and identified that red blood cell (RBC)-localized XL2 and cytosolic XLH4 contribute to most LPC hydrolysis activity in the asexual stage. XLs and XLHs are important for parasites using LPC for growth and contribute to detoxification from accumulated LPC. XL2 and XL4 together are essential for parasite growth under high LPC concentration medium, such as human serum. XL/XLH-deficient parasites could still acquire FA from LPC, which is mainly contributed by parasite membrane- localized PfPARE. PfPARE has little impact on parasite growth and LPC metabolism with the existence of XLs and XLHs but is important after the loss of XLs and XLHs. Parasites deficient in PfPARE, XLs and XLHs have little ability to release FA from LPC and cannot use LPC as FAs source for growth. In summary, we identified metabolic SHs mediating protein depalmitoylation and lipid metabolism and in asexual stage Plasmodium falciparum, which may benefit future drug development to treat malaria.
- Mechanisms of Flavin-Dependent Monooxygenases Involved in Natural Product ChemistryJohnson, Sydney (Virginia Tech, 2024-05-07)Natural products are secondary metabolites produced by plants and microorganisms that often possess medicinal properties and are implicated in organismal defense. Drawbacks to utilizing natural products in the pharmaceutical industry are difficulties with isolation from biological sources and low yields that can lack stereospecificity from synthetic sources. It is paramount to solve these issues and to develop novel natural products to combat the growing antimicrobial resistance crisis, which was responsible for ~5 million deaths in 2019 alone. One approach is utilizing enzymes to synthesize existing natural products to improve the yields and stereospecificity issue. This dissertation is focused on the biochemical characterization of three enzymes-ZvFMO, OxaD, and CreE-that are implicated in the detoxification of natural products used for organismal defense or participate in the biosynthesis of novel natural products. Each of these enzymes belong to the flavin-dependent monooxygenase (FMO) family, which catalyze the oxygenation of a substrate, generating an oxidized product. ZvFMO, from the insect food crop pest, Zonocerus variegatus, was determined to catalyze a highly uncoupled oxygenation reaction of the nitrogen or sulfur atom of various substrates. OxaD, from Penicillium oxalicum F30, catalyzes novel sequential oxidation reactions of the indole nitrogen of roquefortine C. CreE, from Streptomyces cremeus, also catalyzes sequential nitrogen oxidation reactions to convert L-aspartate to nitrosuccinate en route to biosynthesis of cremeomycin. For each enzyme, the steady-state kinetics have been determined using an oxygen consumption assay and the rapid-reaction kinetics were measured using anaerobic time-resolved spectroscopy. All three enzymes feature a fast flavin reduction step and a slow flavin dehydration step. The oxygenation chemistry of each enzyme was found to proceed through a highly reactive oxygenating species, the C4a-hydroperoxyflavin. Site-directed mutagenesis efforts led to the identification of key active site residues involved in flavin motion and substrate binding, revealing important information about the active site architecture for enzyme engineering applications and drug discovery efforts.