Browsing by Author "Kligman, Ben T."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- The earliest equatorial record of frogs from the Late Triassic of ArizonaStocker, Michelle R.; Nesbitt, Sterling J.; Kligman, Ben T.; Paluh, Daniel J.; Marsh, Adam D.; Blackburn, David C.; Parker, William G. (Royal Society Publishing, 2019-02-01)Crown-group frogs (Anura) originated over 200 Ma according to molecular phylogenetic analyses, though only a few fossils from high latitudes chronicle the first approximately 60 Myr of frog evolution and distribution. We report fossils that represent both the first Late Triassic and the earliest equatorial record of Salientia, the group that includes stem and crown-frogs. These small fossils consist of complete and partial ilia with anteriorly directed, elongate and distally hollow iliac blades. These features of these ilia, including the lack of a prominent dorsal protuberance and a shaft that is much longer than the acetabular region, suggest a closer affinity to crown-group Anura than to Early Triassic stem anurans Triadobatrachus from Madagascar and Czatkobatrachus from Poland, both high-latitude records. The new fossils demonstrate that crown anurans may have been present in the Late Triassic equatorial region of Pangea. Furthermore, the presence of Early Jurassic anurans in the same stratigraphic sequence (Prosalirus bitis from the Kayenta Formation) suggests that anurans survived the climatic aridification of this region in the early Mesozoic. These fossils highlight the importance of the targeted collection of microfossils and provide further evidence for the presence of crown-group representatives of terrestrial vertebrates prior to the end-Triassic extinction.
- New sphenodontian (Reptilia: Lepidosauria) from a novel Late Triassic paleobiota in western North America sheds light on the earliest radiation of herbivorous lepidosaursKligman, Ben T.; McClure, Warren C.; Korbitz, Mark; Schumacher, Bruce A. (2021-07)Herbivory is a common ecological function among extant lepidosaurs, but little is known about the origin of this feeding strategy within Lepidosauria. Here we describe a sphenodontian (Lepidosauria) from the Late Triassic of western North America, Trullidens purgatorii n. gen. n. sp., that reveals new aspects of the earliest radiation of herbivorous lepidosaurs. This taxon is represented by an isolated lower jaw with robust structure bearing transversely widened dentition and extensive wear facets, suggesting a masticatory apparatus specialized for herbivory. An unusual 'incisor-like' tooth is present at the anterior end of the jaw; a unique feature among lepidosaurs, this tooth is convergent with the incisors of extant rodents and lagomorphs. Phylogenetic analyses support the placement of this taxon within opisthodontian sphenodontians, a group sharing derived cranio-dental morphologies specialized for herbivory. The new taxon was recovered in a recently discovered and unnamed series of Upper Triassic strata in southeastern Colorado, USA, exposed in Canyons incised by the Purgatoire River and its tributaries. These strata comprise a dominantly red-bed sequence of conglomerates, sandstones, and siltstones deposited in a fluvio-lacustrine setting, preserving a Late Triassic biota of invertebrate and vertebrate ichnofossils, plant macrofossils, bony fish, temnospondyl amphibians, and reptiles. We use aetosaur osteoderms as biostratigraphic links to the nearby Chinle Formation of Arizona, USA, establishing a middle Norian age for these strata. The presence of an opisthodontian from western equatorial Pangaea in the Norian Stage reveals a near-global radiation of this clade across the Pangaean supercontinent during the Late Triassic. UUID: http://zoobank.org/A737c03f-863a-488e-a860-5cc914548774.
- Skeletal Anatomy of Acaenasuchus Geoffreyi Long and Murry, 1995 (Archosauria: Pseudosuchia) and its Implications for the Origin of the Aetosaurian CarapaceMarsh, Adam D.; Smith, Matthew E.; Parker, William G.; Irmis, Randall B.; Kligman, Ben T. (2020-07-03)Acaenasuchus geoffreyi is a diminutive armored archosaur from the Upper Triassic Chinle Formation of northern Arizona, U.S.A., with uncertain evolutionary relationships and skeletal maturity. Known only from osteoderms, the taxon has been considered a valid taxon of aetosaur, juvenile specimens synonymous with the aetosaur Desmatosuchus spurensis, or a non-aetosaurian pseudosuchian archosaur. Here, we describe new fossils of Acaenasuchus geoffreyi that represent cranial, vertebral, and appendicular elements as well as previously unknown variations in the dorsal carapace and ventral shield. The skull bones are ornamented with the same anastomosing complex of ridges and grooves found on the paramedian and lateral osteoderms, and the appendicular skeleton resembles that of Revueltosaurus callenderi, Euscolosuchus olseni, aetosaurs, and other armored archosaurs such as erpetosuchids. Histology of osteoderms from the hypodigm of Acaenasuchus geoffreyi shows multiple growth lines, laminar tissue, and low vascularity, evidence that the individuals were close to skeletal maturity and not young juveniles. A revised phylogenetic analysis of early archosaurs recovers Acaenasuchus geoffreyi and Euscolosuchus olsenias sister taxa and members of a new clade that is the sister taxon of Aetosauria. This new phylogeny depicts a broader distribution of osteoderm character states previously thought to only occur in aetosaurs, demonstrating the danger of using only armor character states in aetosaur taxonomy and phylogeny. Acaenasuchus geoffreyi is also a good example of how new fossils can stabilize 'wild card' taxa in phylogenetic analyses and contributes to our understanding of the evolution of the aetosaur carapace.
- Triassic stem caecilian supports dissorophoid origin of living amphibiansKligman, Ben T.; Gee, Bryan M.; Marsh, Adam D.; Nesbitt, Sterling J.; Smith, Matthew E.; Parker, William G.; Stocker, Michelle R. (Nature Research, 2023-01-25)Living amphibians (Lissamphibia) include frogs and salamanders (Batrachia) and the limbless worm-like caecilians (Gymnophiona). The estimated Palaeozoic era gymnophionan–batrachian molecular divergence suggests a major gap in the record of crown lissamphibians prior to their earliest fossil occurrences in the Triassic period. Recent studies find a monophyletic Batrachia within dissorophoid temnospondyls, but the absence of pre-Jurassic period caecilian fossils has made their relationships to batrachians and affinities to Palaeozoic tetrapods controversial. Here we report the geologically oldest stem caecilian—a crown lissamphibian from the Late Triassic epoch of Arizona, USA—extending the caecilian record by around 35 million years. These fossils illuminate the tempo and mode of early caecilian morphological and functional evolution, demonstrating a delayed acquisition of musculoskeletal features associated with fossoriality in living caecilians, including the dual jaw closure mechanism, reduced orbits and the tentacular organ. The provenance of these fossils suggests a Pangaean equatorial origin for caecilians, implying that living caecilian biogeography reflects conserved aspects of caecilian function and physiology19, in combination with vicariance patterns driven by plate tectonics. These fossils reveal a combination of features that is unique to caecilians alongside features that are shared with batrachian and dissorophoid temnospondyls, providing new and compelling evidence supporting a single origin of living amphibians within dissorophoid temnospondyls.