Browsing by Author "Kominoski, John S."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Continental-scale decrease in net primary productivity in streams due to climate warmingSong, Chao; Dodds, Walter K.; Ruegg, Janine; Argerich, Alba; Baker, Christina L.; Bowden, William B.; Douglas, Michael M.; Farrell, Kaitlin J.; Flinn, Michael B.; Garcia, Erica A.; Helton, Ashley M.; Harms, Tamara K.; Jia, Shufang; Jones, Jeremy B.; Koenig, Lauren E.; Kominoski, John S.; McDowell, William H.; McMaster, Damien; Parker, Samuel P.; Rosemond, Amy D.; Ruffing, Claire M.; Sheehan, Ken R.; Trentman, Matt T.; Whiles, Matt R.; Wollheim, Wilfred M.; Ballantyne, Ford (2018-06)Streams play a key role in the global carbon cycle. The balance between carbon intake through photosynthesis and carbon release via respiration influences carbon emissions from streams and depends on temperature. However, the lack of a comprehensive analysis of the temperature sensitivity of the metabolic balance in inland waters across latitudes and local climate conditions hinders an accurate projection of carbon emissions in a warmer future. Here, we use a model of diel dissolved oxygen dynamics, combined with high-frequency measurements of dissolved oxygen, light and temperature, to estimate the temperature sensitivities of gross primary production and ecosystem respiration in streams across six biomes, from the tropics to the arctic tundra. We find that the change in metabolic balance, that is, the ratio of gross primary production to ecosystem respiration, is a function of stream temperature and current metabolic balance. Applying this relationship to the global compilation of stream metabolism data, we find that a 1 degrees C increase in stream temperature leads to a convergence of metabolic balance and to a 23.6% overall decline in net ecosystem productivity across the streams studied. We suggest that if the relationship holds for similarly sized streams around the globe, the warming-induced shifts in metabolic balance will result in an increase of 0.0194 Pg carbon emitted from such streams every year.
- Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and riversShah, Jennifer J. Follstad; Kominoski, John S.; Ardon, Marcelo; Dodds, Walter K.; Gessner, Mark O.; Griffiths, Natalie A.; Hawkins, Charles P.; Johnson, Sherri L.; Lecerf, Antoine; Leroy, Carri J.; Manning, David W. P.; Rosemond, Amy D.; Sinsabaugh, Robert L.; Swan, Christopher M.; Webster, Jackson R.; Zeglin, Lydia H. (2017-08)Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. Here, we synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by the activation energy (E-a, in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which E-a could be calculated. Higher values of E-a were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). E-a values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the E-a was 0.34 +/- 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5-21% with a 1-4 C rise in water temperature, rather than a 10-45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in E-a values for these regions (0.75 +/- 0.13 eV and 0.27 +/- 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that E-a values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global scale.
- Respiration regimes in rivers: Partitioning source-specific respiration from metabolism time seriesBertuzzo, Enrico; Hotchkiss, Erin R.; Argerich, Alba; Kominoski, John S.; Oviedo-Vargas, Diana; Savoy, Philip; Scarlett, Rachel; von Schiller, Daniel; Heffernan, James B. (Wiley, 2022-09)Respiration in streams is controlled by the timing, magnitude, and quality of organic matter (OM) inputs from internal primary production and external fluxes. Here, we estimated the contribution of different OM sources to seasonal, annual, and event-driven characteristics of whole-stream ecosystem respiration (ER) using an inverse modeling framework that accounts for possible time-lags between OM inputs and respiration. We modeled site-specific, dynamic OM stocks contributing to ER: autochthonous OM from gross primary production (GPP); allochthonous OM delivered during flow events; and seasonal pulses of leaf litter. OM stored in the sediment and dissolved organic matter (DOM) transported during baseflow were modeled as a stable stock contributing to baseline respiration. We applied this modeling framework to five streams with different catchment size, climate, and canopy cover, where multi-year time series of ER and environmental variables were available. Overall, the model explained between 53% and 74% of observed ER dynamics. Respiration of autochthonous OM tracked seasonal peaks in GPP in spring or summer. Increases in ER were often associated with high-flow events. Respiration associated with litter inputs was larger in smaller streams. Time lags between leaf inputs and respiration were longer than for other OM sources, likely due to lower biological reactivity. Model estimates of source-specific ER and OM stocks compared well with existing measures of OM stocks, inputs, and respiration or decomposition. Our modeling approach has the potential to expand the scale of comparative analyses of OM dynamics within and among freshwater ecosystems.