Browsing by Author "Kong, Zhenyu (James)"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- In situ melt pool measurements for laser powder bed fusion using multi sensing and correlation analysisWang, Rongxuan; Garcia, David; Kamath, Rakesh R.; Dou, Chaoran; Ma, Xiaohan; Shen, Bo; Choo, Hahn; Fezzaa, Kamel; Yu, Hang Z.; Kong, Zhenyu (James) (Nature Portfolio, 2022-08-12)Laser powder bed fusion is a promising technology for local deposition and microstructure control, but it suffers from defects such as delamination and porosity due to the lack of understanding of melt pool dynamics. To study the fundamental behavior of the melt pool, both geometric and thermal sensing with high spatial and temporal resolutions are necessary. This work applies and integrates three advanced sensing technologies: synchrotron X-ray imaging, high-speed IR camera, and high-spatial-resolution IR camera to characterize the evolution of the melt pool shape, keyhole, vapor plume, and thermal evolution in Ti-6Al-4V and 410 stainless steel spot melt cases. Aside from presenting the sensing capability, this paper develops an effective algorithm for high-speed X-ray imaging data to identify melt pool geometries accurately. Preprocessing methods are also implemented for the IR data to estimate the emissivity value and extrapolate the saturated pixels. Quantifications on boundary velocities, melt pool dimensions, thermal gradients, and cooling rates are performed, enabling future comprehensive melt pool dynamics and microstructure analysis. The study discovers a strong correlation between the thermal and X-ray data, demonstrating the feasibility of using relatively cheap IR cameras to predict features that currently can only be captured using costly synchrotron X-ray imaging. Such correlation can be used for future thermal-based melt pool control and model validation.
- MVGCN: Multi-view Graph Convolutional Neural Network for Surface Defect Identification using 3D Point CloudWang, Yinan; Sun, Wenbo; Jin, Jionghua (Judy); Kong, Zhenyu (James); Yue, Xiaowei (2023-03)Surface defect identification is a crucial task in many manufacturing systems, including automotive, aircraft, steel rolling, and precast concrete. Although image-based surface defect identification methods have been proposed, these methods usually have two limitations: images may lose partial information, such as depths of surface defects, and their precision is vulnerable to many factors, such as the inspection angle, light, color, noise, etc. Given that a three-dimensional (3D) point cloud can precisely represent the multidimensional structure of surface defects, we aim to detect and classify surface defects using a 3D point cloud. This has two major challenges: (i) the defects are often sparsely distributed over the surface, which makes their features prone to be hidden by the normal surface and (ii) different permutations and transformations of 3D point cloud may represent the same surface, so the proposed model needs to be permutation and transformation invariant. In this paper, a two-step surface defect identification approach is developed to investigate the defects’ patterns in 3D point cloud data. The proposed approach consists of an unsupervised method for defect detection and a multi-view deep learning model for defect classification, which can keep track of the features from both defective and non-defective regions. We prove that the proposed approach is invariant to different permutations and transformations. Two case studies are conducted for defect identification on the surfaces of synthetic aircraft fuselage and the real precast concrete specimen, respectively. The results show that our approach receives the best defect detection and classification accuracy compared with other benchmark methods.