Browsing by Author "Kopacz, M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES)Kopacz, M.; Jacob, D. J.; Fisher, J. A.; Logan, J. A.; Zhang, L.; Megretskaia, I. A.; Yantosca, R. M.; Singh, K.; Henze, Daven K.; Burrows, J. P.; Buchwitz, M.; Khlystova, I.; McMillan, W. W.; Gille, J. C.; Edwards, D. P.; Eldering, A.; Thouret, V.; Nedelec, P. (Copernicus Publications, 2010)We combine CO column measurements from the MOPITT, AIRS, SCIAMACHY, and TES satellite instruments in a full-year (May 2004-April 2005) global inversion of CO sources at 4 degrees x 5 degrees spatial resolution and monthly temporal resolution. The inversion uses the GEOS-Chem chemical transport model (CTM) and its adjoint applied to MOPITT, AIRS, and SCIAMACHY. Observations from TES, surface sites (NOAA/GMD), and aircraft (MOZAIC) are used for evaluation of the a posteriori solution. Using GEOS-Chem as a common intercomparison platform shows global consistency between the different satellite datasets and with the in situ data. Differences can be largely explained by different averaging kernels and a priori information. The global CO emission from combustion as constrained in the inversion is 1350 Tg a(-1). This is much higher than current bottom-up emission inventories. A large fraction of the correction results from a seasonal underestimate of CO sources at northern mid-latitudes in winter and suggests a larger-than-expected CO source from vehicle cold starts and residential heating. Implementing this seasonal variation of emissions solves the long-standing problem of models underestimating CO in the northern extratropics in winter-spring. A posteriori emissions also indicate a general underestimation of biomass burning in the GFED2 inventory. However, the tropical biomass burning constraints are not quantitatively consistent across the different datasets.
- Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan PlateauKopacz, M.; Mauzerall, D. L.; Wang, J.; Leibensperger, E. M.; Henze, Daven K.; Singh, K. (Copernicus Publications, 2011)The remote and high elevation regions of central Asia are influenced by black carbon (BC) emissions from a variety of locations. BC deposition contributes to melting of glaciers and questions exist, of both scientific and policy interest, as to the origin of the BC reaching the glaciers. We use the adjoint of the GEOS-Chem model to identify the location from which BC arriving at a variety of locations in the Himalayas and Tibetan Plateau originates. We then calculate its direct and snow-albedo radiative forcing. We analyze the seasonal variation in the origin of BC using an adjoint sensitivity analysis, which provides a detailed map of the location of emissions that directly contribute to black carbon concentrations at receptor locations. We find that emissions from northern India and central China contribute the majority of BC to the Himalayas, although the precise location varies with season. The Tibetan Plateau receives most BC from western and central China, as well as from India, Nepal, the Middle East, Pakistan and other countries. The magnitude of contribution from each region varies with season and receptor location. We find that sources as varied as African biomass burning and Middle Eastern fossil fuel combustion can significantly contribute to the BC reaching the Himalayas and Tibetan Plateau. We compute radiative forcing in the snow-covered regions and find the forcing due to the BC induced snow-albedo effect to vary from 5-15 W m(-2) within the region, an order of magnitude larger than radiative forcing due to the direct effect, and with significant seasonal variation in the northern Tibetan Plateau. Radiative forcing from reduced snow albedo likely accelerates glacier melting. Our analysis may help inform mitigation efforts to slow the rate of glacial melt by identifying regions that make the largest contributions to BC deposition in the Himalayas and Tibetan Plateau.