Browsing by Author "Krishnan, Siddharth"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Pricing a Protest: Forecasting the Dynamics of Civil Unrest Activity in Social MediaGoode, Brian J.; Krishnan, Siddharth; Roan, Michael J.; Ramakrishnan, Naren (PLOS, 2015-10-06)Online social media activity can often be a precursor to disruptive events such as protests, strikes, and “occupy” movements.We have observed that such civil unrest can galvanize supporters through social networks and help recruit activists to their cause. Understanding the dynamics of social network cascades and extrapolating their future growth will enable an analyst to detect or forecast major societal events. Existing work has primarily used structural and temporal properties of cascades to predict their future behavior. But factors like societal pressure, alignment of individual interests with broader causes, and perception of expected benefits also affect protest participation in social media. Here we develop an analysis framework using a differential game theoretic approach to characterize the cost of participating in a cascade, and demonstrate how we can combine such cost features with classical properties to forecast the future behavior of cascades. Using data from Twitter, we illustrate the effectiveness of our models on the “Brazilian Spring” and Venezuelan protests that occurred in June 2013 and November 2013, respectively. We demonstrate how our framework captures both qualitative and quantitative aspects of how these uprisings manifest through the lens of tweet volume on Twitter social media.
- Seeing the Forest for the Trees: New approaches to Characterizing and Forecasting CascadesKrishnan, Siddharth (Virginia Tech, 2018-05-18)Cascades are a popular construct to observe and study information propagation (or diffusion) in social media such as Twitter and are defined using notions of influence, activity, or discourse commonality (e.g., hashtags). While these notions of cascades lead to different perspectives, primarily cascades are modeled as trees. We argue in this thesis an alternative viewpoint of cascades as forests (of trees) which yields a richer vocabulary of features to understand information propagation. We propose to develop a framework to extract forests and analyze their growth by studying their evolution at the tree-level and at the node-level. Furthermore, we outline four different problems that use the forest framework. First, we show that such forests of information cascades can be used to design counter-contagion algorithms to disrupt the spread of negative campaigns or rumors. Secondly, we demonstrate how such forests of information cascades can give us a rich set of features (structural and temporal), which can be used to forecast information flow. Thirdly, we argue that cascades modeled as forests can help us glean social network sensors to detect future contagious outbreaks that occur in the social network. To conclude, we show preliminary results of an approach - a generative model, that can describe information cascades modeled as forests and can generate synthetic cascades with empirical properties mirroring cascades extracted from Twitter.