Browsing by Author "Ku, Kihong"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- 3D Model-Based Collaboration in Design Development and Construction of Complex Shaped BuildingsKu, Kihong; Pollalis, Spiro N.; Fischer, Martin A.; Shelden, Dennis R. (2008)The successful implementation of complex-shaped buildings within feasible time and budget limits, has brought attention to the potential of computer-aided design and manufacturing technologies (CAD/CAM), Building Information Modeling (BIM), and the need for integrated practice. At the core of an integrated practice vision lies the intimate collaboration between the design team and construction team and a digital three-dimensional model, often with parametric and intelligent characteristics. With the shift from two-dimensional (2D) paper-based representations to threedimensional (3D) geometric representations in building information models (BIM), architects and engineers have streamlined 'inner' design team communication and collaboration. However, practice conventions have posed significant challenges when attempting to collaborate on the designer's 3D model with the 'external' design team-involving the architect (or engineer)-of-record, and contractor, construction manager or fabricator, etc. Focusing on the execution of complex-shaped buildings, the objective of this paper is to illustrate varying collaborative approaches to understand how design teams use 3D models to control geometry. The authors attempt to provide specific responses to the following questions: What are the issues when collaborating on 3D models? What are the mechanisms that design teams adopt to surpass practice conventions? The findings from three case studies suggest that collaboration methodologies on 3D models differ with the architects' approaches to geometry control. The authors will demonstrate that successful model-based collaboration occurs either on a contractual or non-contractual model issued by the architect.
- Building Interactive Modeling for Construction Education in Virtual WorldsKu, Kihong; Mahabaleshwarkar, Pushkar S. (2011)The number of design and construction professionals who are using Building Information Modeling (BIM) is rapidly growing and simultaneously the architecture, engineering, and construction (AEC) community is faced with the challenge of remote collaboration as offshore outsourcing continues to grow. While BIM facilitates information sharing between AEC professionals via purpose-built three-dimensional (3D), 4D design, analysis, evaluation, and documentation models, the communication of such 3D data-rich models if often fragmented and typically limits real-time communication and interaction of users who may be geographically dispersed and/or lack the modeling and analyses skills to interact with these models. AEC education needs to expose students to these emerging practice changes while finding new ways to more effectively address the fundamentals of design and construction. Virtual worlds - in this research the Second Life platform - have the potential to address the communication issues and effectively complement traditional teaching approaches and furthermore integrate with BIM to enhance construction education. Nevertheless, despite the potential benefits of virtual worlds, various obstacles exist. This paper presents the concept of Building interactive Modeling (BiM) which complements the capabilities of BIM with social interaction to enhance collaborative information and knowledge sharing. Role-playing scenarios developed in Second Life demonstrate specific opportunities of BiM.
- Contractual Standards for Enhanced Geometry Control in Model-Based CollaborationKu, Kihong; Pollalis, Spiro N. (2009)This paper discusses the definition of contractual standards for ICT-enabled business models and value-driven business models, focusing on model-based collaboration for enhanced geometry control. While a growing number of highly publicized international complex-shaped buildings have demonstrated the usage of three-dimensional (3D) modeling as the primary means for geometric representation, the authors have observed a lack of contractual standards around the 3D model. Process complexities that are deeply embedded in practice conventions, along with legal constraints and risk allocation, pose challenges to the establishment of standard agreements. As a result, individual project teams often struggle to define and find adequate design agreements to facilitate effective control of geometry around the 3D model. Ineffective geometry control may result in schedule delays when project participants disagree on the representation of the 3D model, or even change the original design intent, eroding the integrity of the design. Thus, the proliferation of 3D tools and owner demand for complex-shaped buildings creates a great need for standard design agreements over the control of the architect's geometric 3D model, in order to define control and authority, as well as a mechanism to access and verify the validity of the 3D geometry. The study presents an in-depth review and analysis of (1) the existing body of literature on effective geometry control; (2) case study examples of geometry control as a project metric; (3) an analysis of sample contract terms and the effect on geometry control approaches; and (4) recommendations for effective geometry control contract terms, processes, and strategies for owner-architect and owner-designer standard agreements. The paper's principal value lies in (1) its definition of geometry control as a performance metric and (2) its guideline for standard contract terms to facilitate effective geometry control via design agreements. The results will complement existing industry efforts by owner organizations such as the Construction Users Roundtable and design organizations such as the American Institute of Architects.
- The Pace of Technological Innovation in Architecture, Engineering, and Construction Education: Integrating Recent Trends Into the CurriculaBecerik-Gerber, Burcin; Gerber, David J.; Ku, Kihong (2011)The U.S. AEC industry is faced with the ever-increasing challenge of managing the public and private facilities and infrastructure to support the accomplishment of its economy. The increasing global emphasis on sustainable approaches and the need to increase efficiency and improve cost over the lifecycle of projects, demand new approaches to architecture, engineering, and construction (AEC) education. This study was initiated to look for insight into the current educational environment and to provide a baseline for possible solutions to cope with the complexity of the challenge. This paper examined 101 U.S. AEC programs focusing on emerging subject areas of Building Information Modeling (BIM) and sustainability, and reviewed how educational innovations of distance learning, multidisciplinary collaboration, industry collaborations, are incorporated to develop core competencies in those two subject areas. The researchers reviewed and categorized the AEC disciplines based on the respective accrediting bodies of ABET, NAAB, and ACCE, and surveyed the internal factors (e.g., program resources, expertise, etc.) and external factors (e.g., accreditation requirements, sustainability initiatives, etc.) that affect the pedagogical approaches. This study illustrates the challenges incorporating new knowledge areas into constrained curricula and the various approaches that the university programs are undertaking. A comparative analysis also reveals the similarities and differences and specific advantages and disadvantages of particular approaches across the AEC programs. The findings reinforce the notion that there are disparities in these educational programs, which need realignment to develop the workforce of the future that will lead the AEC industry transformations.