Browsing by Author "Kumari, Annu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Impact of Futuristic Climate Variables on Weed Biology and Herbicidal Efficacy: A ReviewKumar, Vipin; Kumari, Annu; Price, Andrew J.; Bana, Ram Swaroop; Singh, Vijay; Bamboriya, Shanti Devi (MDPI, 2023-02-15)Our changing climate will likely have serious implications on agriculture production through its effects on food and feed crop yield and quality, forage and livestock production, and pest dynamics, including troublesome weed control. With regards to weeds, climatic variables control many plant physiology functions that impact flowering, fruiting, and seed dormancy; therefore, an altered climate can result in a weed species composition shift within agro-ecosystems. Weed species will likely adapt to a changing climate due to their high phenotypic plasticity and vast genetic diversity. Higher temperatures and CO2 concentrations, and altered moisture conditions, not only affect the growth of weeds, but also impact the effectiveness of herbicides in controlling weeds. Therefore, weed biology, growth characteristics, and their management are predicted to be affected greatly by changing climatic conditions. This manuscript attempted to compile the available information on general principles of weed response to changing climatic conditions, including elevated CO2 and temperature under diverse rainfall patterns and drought. Likewise, we have also attempted to highlight the effect of soil moisture dynamics on the efficacy of various herbicides under diverse agro-ecosystems.
- Seed Germination Ecology of Chenopodium album and Chenopodium muraleBana, Ram Swaroop; Kumar, Vipin; Sangwan, Seema; Singh, Teekam; Kumari, Annu; Dhanda, Sachin; Dawar, Rakesh; Godara, Samarth; Singh, Vijay (MDPI, 2022-11-01)Chenopodium album L. and Chenopodium murale L. are two principal weed species, causing substantial damage to numerous winter crops across the globe. For sustainable and resource-efficient management strategies, it is important to understand weeds’ germination behaviour under diverse conditions. For the germination investigations, seeds of both species were incubated for 15 days under different temperatures (10–30 °C), salinity (0–260 mM NaCl), osmotic stress (0–1 MPa), pH (4–10), and heating magnitudes (50–200 °C). The results indicate that the germination rates of C. album and C. murale were 54–95% and 63–97%, respectively, under a temperature range of 10 to 30 °C. The salinity levels for a 50% reduction in the maximum germination (GR50) for C. album and C. murale were 139.9 and 146.3 mM NaCl, respectively. Regarding osmotic stress levels, the GR50 values for C. album and C. murale were 0.44 and 0.43 MPa, respectively. The two species showed >95% germination with exposure to an initial temperature of 75 °C for 5 min; however, seeds exposed to 100 °C and higher temperatures did not show any germination. Furthermore, a drastic reduction in germination was observed when the pH was less than 6.0 and greater than 8.0. The study generated information on the germination biology of two major weed species under diverse ecological scenarios, which may be useful in developing efficient weed management tactics for similar species in future agri-food systems.