Browsing by Author "López, Krisangel"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Ecology and geography of Cache Valley virus assessed using ecological niche modelingMuller, John A.; López, Krisangel; Escobar, Luis E.; Auguste, A. Jonathan (2024-06-26)Background: Cache Valley virus (CVV) is an understudied Orthobunyavirus with a high spillover transmission potential due to its wide geographical distribution and large number of associated hosts and vectors. Although CVV is known to be widely distributed throughout North America, no studies have explored its geography or employed computational methods to explore the mammal and mosquito species likely participating in the CVV sylvatic cycle. Methods: We used a literature review and online databases to compile locality data for CVV and its potential vectors and hosts. We linked location data points with climatic data via ecological niche modeling to estimate the geographical range of CVV and hotspots of transmission risk. We used background similarity tests to identify likely CVV mosquito vectors and mammal hosts to detect ecological signals from CVV sylvatic transmission. Results: CVV distribution maps revealed a widespread potential viral occurrence throughout North America. Ecological niche models identified areas with climate, vectors, and hosts suitable to maintain CVV transmission. Our background similarity tests identified Aedes vexans, Culiseta inornata, and Culex tarsalis as the most likely vectors and Odocoileus virginianus (white-tailed deer) as the most likely host sustaining sylvatic transmission. Conclusions: CVV has a continental-level, widespread transmission potential. Large areas of North America have suitable climate, vectors, and hosts for CVV emergence, establishment, and spread. We identified geographical hotspots that have no confirmed CVV reports to date and, in view of CVV misdiagnosis or underreporting, can guide future surveillance to specific localities and species.
- Exploring the immunogenicity of an insect-specific virus vectored Zika vaccine candidateTanelus, Manette; López, Krisangel; Smith, Shaan; Muller, John A.; Porier, Danielle L.; Auguste, Dawn I.; Stone, William B.; Paulson, Sally L.; Auguste, A. Jonathan (Springer, 2023-12-01)Zika virus (ZIKV) is an important re-emerging flavivirus that presents a significant threat to human health worldwide. Despite its importance, no vaccines are approved for use in humans. Insect-specific flaviviruses (ISFVs) have recently garnered attention as an antigen presentation platform for vaccine development and diagnostic applications. Here, we further explore the safety, immunogenicity, and efficacy of a chimeric ISFV-Zika vaccine candidate, designated Aripo-Zika (ARPV/ZIKV). Our results show a near-linear relationship between increased dose and immunogenicity, with 1011 genome copies (i.e., 108 focus forming units) being the minimum dose required for protection from ZIKV-induced morbidity and mortality in mice. Including boosters did not significantly increase the short-term efficacy of ARPV/ZIKV-vaccinated mice. We also show that weanling mice derived from ARPV/ZIKV-vaccinated dams were completely protected from ZIKV-induced morbidity and mortality upon challenge, suggesting efficient transfer of maternally-derived protective antibodies. Finally, in vitro coinfection studies of ZIKV with Aripo virus (ARPV) and ARPV/ZIKV in African green monkey kidney cells (i.e., Vero-76) showed that ARPV and ARPV/ZIKV remain incapable of replication in vertebrate cells, despite the presence of active ZIKV replication. Altogether, our data continue to support ISFV-based vaccines, and specifically the ARPV backbone is a safe, immunogenic and effective vaccine strategy for flaviviruses.
- La Crosse Virus Shows Strain-Specific Differences in PathogenesisWilson, Sarah N.; López, Krisangel; Coutermarsh-Ott, Sheryl; Auguste, Dawn I.; Porier, Danielle L.; Armstrong, Philip M.; Andreadis, Theodore G.; Eastwood, Gillian; Auguste, A. Jonathan (MDPI, 2021-03-29)La Crosse virus (LACV) is the leading cause of pediatric viral encephalitis in North America, and is an important public health pathogen. Historically, studies involving LACV pathogenesis have focused on lineage I strains, but no former work has explored the pathogenesis between or within lineages. Given the absence of LACV disease in endemic regions where a robust entomological risk exists, we hypothesize that some LACV strains are attenuated and demonstrate reduced neuroinvasiveness. Herein, we compared four viral strains representing all three lineages to determine differences in neurovirulence or neuroinvasiveness using three murine models. A representative strain from lineage I was shown to be the most lethal, causing >50% mortality in each of the three mouse studies. However, other strains only presented excessive mortality (>50%) within the suckling mouse neurovirulence model. Neurovirulence was comparable among strains, but viruses differed in their neuroinvasive capacities. Our studies also showed that viruses within lineage III vary in pathogenesis with contemporaneous strains, showing reduced neuroinvasiveness compared to an ancestral strain from the same U.S. state (i.e., Connecticut). These findings demonstrate that LACV strains differ markedly in pathogenesis, and that strain selection is important for assessing vaccine and therapeutic efficacies.
- SARS-CoV-2 Specific Nanobodies Neutralize Different Variants of Concern and Reduce Virus Load in the Brain of h-ACE2 Transgenic MicePavan, María Florencia; Bok, Marina; Betanzos San Juan, Rafael; Malito, Juan Pablo; Marcoppido, Gisela Ariana; Franco, Diego Rafael; Militelo, Daniela Ayelen; Schammas, Juan Manuel; Bari, Sara Elizabeth; Stone, William; López, Krisangel; Porier, Danielle LaBrie; Muller, John Anthony; Auguste, A. Jonathan; Yuan, Lijuan; Wigdorovitz, Andrés; Parreño, Viviana Gladys; Ibañez, Lorena Itat (MDPI, 2024-01-25)Since the beginning of the COVID-19 pandemic, there has been a significant need to develop antivirals and vaccines to combat the disease. In this work, we developed llama-derived nanobodies (Nbs) directed against the receptor binding domain (RBD) and other domains of the Spike (S) protein of SARS-CoV-2. Most of the Nbs with neutralizing properties were directed to RBD and were able to block S-2P/ACE2 interaction. Three neutralizing Nbs recognized the N-terminal domain (NTD) of the S-2P protein. Intranasal administration of Nbs induced protection ranging from 40% to 80% after challenge with the WA1/2020 strain in k18-hACE2 transgenic mice. Interestingly, protection was associated with a significant reduction in virus replication in nasal turbinates and a reduction in virus load in the brain. Employing pseudovirus neutralization assays, we identified Nbs with neutralizing capacity against the Alpha, Beta, Delta, and Omicron variants, including a Nb capable of neutralizing all variants tested. Furthermore, cocktails of different Nbs performed better than individual Nbs at neutralizing two Omicron variants (B.1.529 and BA.2). Altogether, the data suggest the potential of SARS-CoV-2 specific Nbs for intranasal treatment of COVID-19 encephalitis.