Browsing by Author "Ladwig, Robert"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Ensemble of models shows coherent response of a reservoir's stratification and ice cover to climate warmingFeldbauer, Johannes; Ladwig, Robert; Mesman, Jorrit P.; Moore, Tadhg N.; Zundorf, Hilke; Berendonk, Thomas U.; Petzoldt, Thomas (Springer, 2022-10)Water temperature, ice cover, and lake stratification are important physical properties of lakes and reservoirs that control mixing as well as bio-geo-chemical processes and thus influence the water quality. We used an ensemble of vertical one-dimensional hydrodynamic lake models driven with regional climate projections to calculate water temperature, stratification, and ice cover under the A1B emission scenario for the German drinking water reservoir Lichtenberg. We used an analysis of variance method to estimate the contributions of the considered sources of uncertainty on the ensemble output. For all simulated variables, epistemic uncertainty, which is related to the model structure, is the dominant source throughout the simulation period. Nonetheless, the calculated trends are coherent among the five models and in line with historical observations. The ensemble predicts an increase in surface water temperature of 0.34 K per decade, a lengthening of the summer stratification of 3.2 days per decade, as well as decreased probabilities of the occurrence of ice cover and winter inverse stratification by 2100. These expected changes are likely to influence the water quality of the reservoir. Similar trends are to be expected in other reservoirs and lakes in comparable regions.
- Lake thermal structure drives interannual variability in summer anoxia dynamics in a eutrophic lake over 37 yearsLadwig, Robert; Hanson, Paul C.; Dugan, Hilary A.; Carey, Cayelan C.; Zhang, Yu; Shu, Lele; Duffy, Christopher J.; Cobourn, Kelly M. (2021-02-25)The concentration of oxygen is fundamental to lake water quality and ecosystem functioning through its control over habitat availability for organisms, redox reactions, and recycling of organic material. In many eutrophic lakes, oxygen depletion in the bottom layer (hypolimnion) occurs annually during summer stratification. The temporal and spatial extent of summer hypolimnetic anoxia is determined by interactions between the lake and its external drivers (e.g., catchment characteristics, nutrient loads, meteorology) as well as internal feedback mechanisms (e.g., organic matter recycling, phytoplankton blooms). How these drivers interact to control the evolution of lake anoxia over decadal timescales will determine, in part, the future lake water quality. In this study, we used a vertical one-dimensional hydrodynamic-ecological model (GLM-AED2) coupled with a calibrated hydrological catchment model (PIHM-Lake) to simulate the thermal and water quality dynamics of the eutrophic Lake Mendota (USA) over a 37 year period. The calibration and validation of the lake model consisted of a global sensitivity evaluation as well as the application of an optimization algorithm to improve the fit between observed and simulated data. We calculated stability indices (Schmidt stability, Birgean work, stored internal heat), identified spring mixing and summer stratification periods, and quantified the energy required for stratification and mixing. To qualify which external and internal factors were most important in driving the interannual variation in summer anoxia, we applied a random-forest classifier and multiple linear regressions to modeled ecosystem variables (e.g., stratification onset and offset, ice duration, gross primary production). Lake Mendota exhibited prolonged hypolimnetic anoxia each summer, lasting between 50-60 d. The summer heat budget, the timing of thermal stratification, and the gross primary production in the epilimnion prior to summer stratification were the most important predictors of the spatial and temporal extent of summer anoxia periods in Lake Mendota. Interannual variability in anoxia was largely driven by physical factors: earlier onset of thermal stratification in combination with a higher vertical stability strongly affected the duration and spatial extent of summer anoxia. A measured step change upward in summer anoxia in 2010 was unexplained by the GLM-AED2 model. Although the cause remains unknown, possible factors include invasion by the predacious zooplankton Bythotrephes longimanus. As the heat budget depended primarily on external meteorological conditions, the spatial and temporal extent of summer anoxia in Lake Mendota is likely to increase in the near future as a result of projected climate change in the region.
- Virtual Growing Pains: Initial Lessons Learned from Organizing Virtual Workshops, Summits, Conferences, and Networking Events during a Global PandemicMeyer, Michael F.; Ladwig, Robert; Dugan, Hilary A.; Anderson, Alyssa; Bah, Abdou R.; Boehrer, Bertram; Borre, Lisa; Chapina, Rosaura J.; Doyle, Chris; Favot, Elizbaeth J.; Flaim, Giobanna; Forsberg, Philip; Hanson, Paul C.; Ibelings, Bas W.; Isles, Peter; Lin, Fang-Pang; Lofton, Dendy; Moore, Tadhg N.; Peel, Sara; Peters, Jody A.; Pierson, Don; de Senerpont Domis, Lisette N.; Schloss, Jeffrey A.; Shikhani, Muhammed; Smagula, Amy P.; Stockwell, Jason D.; Thomas, Perry; Thomas, R. Quinn; Tietjen, Todd; Weathers, Kathleen C. (Wiley, 2021-02-01)For many, 2020 was a year of abrupt professional and personal change. For the aquatic sciences community, many were adapting to virtual formats for conducting and sharing science, while simultaneously learning to live in a socially distanced world. Understandably, the aquatic sciences community postponed or canceled most in-person scientific meetings. Still, many scientific communities either transitioned annual meetings to a virtual format or inaugurated new virtual meetings. Fortunately, increased use of video conferencing platforms, networking and communication applications, and a general comfort with conducting science virtually helped bring the in-person meeting experience to scientists worldwide. Yet, the transition to conducting science virtually revealed new barriers to participation whereas others were lowered. The combined lessons learned from organizing a meeting constitute a necessary knowledge base that will prove useful, as virtual conferences are likely to continue in some form. To concentrate and synthesize these experiences, we showcase how six scientific societies and communities planned, organized, and conducted virtual meetings in 2020. With this consolidated information in hand, we look forward to a future, where scientific meetings embrace a virtual component, so to as help make science more inclusive and global.