Browsing by Author "Lahr, Derek Frei"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Design and Control of a Humanoid Robot, SAFFiRLahr, Derek Frei (Virginia Tech, 2014-05-29)Emergency first responders are the great heroes of our day, having to routinely risk their lives for the safety of others. Developing robotic technologies to aid in such emergencies could greatly reduce the risk these individuals must take, even going so far as to eliminate the need to risk one life for another. In this role, humanoid robots are a strong candidate, being able to take advantage of both the human engineered environment in which it will likely operate, but also make use of human engineered tools and equipment as it deals with a disaster relief effort. The work presented here aims to lessen the hurdles that stand in the way through the research and development of new humanoid robot technologies. To be successful in the role of an emergency first responder requires a fantastic array of skills. One of the most fundamental is the ability to just get to the scene. Unfortunately, it is at this level that humanoid robots currently struggle. This research focuses on the complementary development of physical hardware, digital controllers, and trajectory planning necessary to achieve the research goals of improving the locomotion capabilities of a humanoid robot. To improve the physical performance capabilities of the robot, this research will first focus on the interaction between the hip and knee actuators. It is shown that much like the human body, a biped greatly benefits from the use of biarticular actuation. Improvements in efficiency as much as 30% are possible by simply interconnecting the hip roll and knee pitch joints. Balancing and walking controllers are designed to take advantage of the new hardware capabilities and expand the terrain capabilities of bipedal walking robots to uneven and non-stationary ground. A hybrid position/force control based balancing controller stabilizes the robot's COM regardless of the terrain underfoot. In particular two feedback mechanisms are shown to greatly improve the stability of bipedal systems in response to unmodelled dynamics. The hybrid position/force approach is shown through experiments to greatly extend humanoid capabilities to many types of terrain. With robust balancing ensured, walking trajectories are defined using an improved linear inverted pendulum model that incorporates the swing leg dynamics. The proposed method is shown to significantly reduce the control authority (by 50%) required for satisfactory trajectory following. Three parameters are identified which provide for quick manual or numerical solutions to be found to the trajectory problem. The walking and balance controller were operated on four different terrains successfully, strewn plywood, gravel, and high pile synthetic grass. Furthermore, SAFFiR is believed to be the first bipedal robot to ever walk on sand. The hardware enabled force control architecture was very effective at modulating ground reaction torques no matter the ground conditions. This in combination with highly accurate state estimation provided a very stable balance controller on top of which successful walking was demonstrated.
- Development of a Novel Cam-based Infinitely Variable TransmissionLahr, Derek Frei (Virginia Tech, 2009-11-06)An infinitely variable transmission (IVT) is a transmission that can smoothly and continuously vary the speed ratio between an input and output from zero to some other positive or negative ratio; they are a subset of continuously variable transmissions (CVTs), which themselves do not have the ability to produce a zero gear ratio. In this thesis, the operation, analysis, and development of a novel, highly configurable, Cam-based Infinitely Variable Transmission of the ratcheting drive type is presented. There are several categories of CVTs in existence today, including traction, belt, and ratcheting types. Drives of these types, their attributes, and associated design challenges are discussed to frame the development of the Cam-based IVT. The operation of this transmission is kinematically similar to a planetary gearset, and therefore, its operation is described with that in mind including a description of the six major components of the transmission, those being the cam, followers, carriers, planet gears, sun gears, and one way clutches. The kinematic equation describing its motion is derived based on the similarities it shares with a planetary gearset. Additionally, the equations for the cam design are developed here as the operation of the CVT is highly dependent on the shape of the cam. There are six simple inversions of this device and each inversion has special characteristics and limitations, for example, the available gear range. A method was developed to select the most suitable inversion, gearing, and follower velocity for a given application. The contact stress between the rollers and cam is the limiting stress within the transmission. A parametric study is used to quantify the relationship between this stress and the transmission parameters. Based off those results, two optimization strategies and their results are discussed. The first is an iterative brute force type numerical search and the second is a genetic algorithm. The optimization results are shown to be similar and successfully reduced the contact stress by 40%. To further improve the transmission performance, several mechanisms were developed for this unique transmission. These include a compact and lightweight differential mechanism based on a cord and pulley system to reduce the contact force on the rollers. In addition, a unique external/inverted cam topology was developed to improve the contact geometry between the rollers and said cam. A prototype was built based on both the optimization strategies and these mechanisms and is described within. Finally, a Prony brake dynamometer with cradled motor was constructed to test the transmission; the results of those tests show the Cam-based IVT to be 93% efficient at low input torque levels.