Browsing by Author "Lazar, Iuliana M."
Now showing 1 - 20 of 26
Results Per Page
Sort Options
- 2014 OA Week PanelRivers, Caitlin; Matheis, Christian; Lazar, Iuliana M.; Sutherland, Michelle; Tideman, Nicolaus; Wynne, Randolph H. (2014-10-31)
- Assembly, characterization and evaluation of a 3rd generation nanoparticle based drug carrier for metastatic breast cancer treatmentHuang, Wei (Virginia Tech, 2013-06-03)Cancer is one of the leading causes of death in the world. For women in the U.S. and the European countries, breast cancer is the most common type and it continuously threatens the lives of the patients and causes huge economic losses. Chemotherapy and endocrine therapy are the common treatments for recurrence prevention and metastatic cancer symptom palliation. However, the uses of these therapies are meanwhile largely limited because their toxic side effects and non-specificity usually lead to low quality lives of the patients. Low aqueous solubility, multi-drug resistance, degradation of drug, limited intra-tumor diffusion and etc. are other limitations of conventional chemotherapies and endocrine therapies. Nanoparticle based drug carriers were extensively studied for therapeutic drug delivery. Many carriers could be loaded with high dose of hydrophobic and hydrophilic drugs, protect the drug from the surrounding in vivo environment during the transportation, specifically target and enter the tumor cells and slowly release the drug thereafter. Advanced nanoparticle drug carriers are studied driven by the need of a more efficient drug delivery. The 3rd generation of nanoparticle based drug carriers are recently developed. They usually consist of more than one type of nanoparticles. Different part of the particle has more specialized functions. Therefore, by carefully selecting from the conventional nanoparticle carriers, a 3rd generation particle could have the properties such as high loading capacity of multiple drugs, prolonged half-life in circulation, higher tendency of accumulating at the tumor site, improved specificity to the tumor cells, higher cell uptake rate and accurately triggered controlled release, and combination of the above-mentioned properties. In our study, a paclitaxel loaded nanoparticle supported immunoliposome was assembled for metastatic breast cancer drug delivery. Functionalized single walled carbon nanohorn or poly(lactic-co-glycolic acid) was encapsulated in the polyethylene glycol (PEG) coated liposome for high drug loading and controlled release. Anti-Her2 antibody or Herceptin® was grafted onto the surface of the liposome for a higher affinity to the Her2 overexpressing breast cancer cells. Firstly, the conjugation of protein to the surface of liposome and PEGylated liposomes were investigated. Proteins with or without membrane binding domain were conjugated to liposome and PEGylated liposomes through covalent and non-covalent binding for comparison. A modified enzyme-linked immune sorbent assay was developed for surface grafted protein quantification. Secondly, the encapsulation of solid nanoparticle into PEGylated immunoliposome was investigated. Results showed a new structure of solid nanoparticle in PEGylated immunoliposome at a 1:1 ratio was formed during the repeated freeze-thawing process. Supported immunoliposomes with high homogeneity in size and structure were purified by sucrose density gradient centrifugation. Thirdly, the drug loading, triggered release, cell binding, cell uptake and cell toxicities of the supported immunoliposome were studied. Release results showed a minimum drug leakage in serum at body temperature from the particle. The release was initiated with a minor burst trigged by low pH inside the tumor cell and followed with a long term linear pattern. Cell assay results showed the highest binding affinity of the antibody or Herceptin® grafted nanoparticles to Her2 overexpressing cell lines and a lysosomal intracellular distribution of the endocytosised particles. In the final study, a fabrication process for polymeric material nanoparticles was established. The process was capable of providing accurate control of the particle size with significant high output rates, thus largely extends the scope of materials for supporting the immunoliposome.
- Cell Cycle Model System for Advancing Cancer Biomarker ResearchLazar, Iuliana M.; Hoeschele, Ina; de Morais, Juliana; Tenga, Milagros J. (Springer Nature, 2017-12-21)Progress in understanding the complexity of a devastating disease such as cancer has underscored the need for developing comprehensive panels of molecular markers for early disease detection and precision medicine applications. The present study was conducted to assess whether a cohesive biological context can be assigned to protein markers derived from public data mining, and whether mass spectrometry can be utilized to screen for the co-expression of functionally related biomarkers to be recommended for further exploration in clinical context. Cell cycle arrest/release experiments of MCF7/SKBR3 breast cancer and MCF10 non-tumorigenic cells were used as a surrogate to support the production of proteins relevant to aberrant cell proliferation. Information downloaded from the scientific public domain was queried with bioinformatics tools to generate an initial list of 1038 cancer-associated proteins. Mass spectrometric analysis of cell extracts identified 352 proteins that could be matched to the public list. Differential expression, enrichment, and protein-protein interaction analysis of the proteomic data revealed several functionally-related clusters of relevance to cancer. The results demonstrate that public data derived from independent experiments can be used to inform biological research and support the development of molecular assays for probing the characteristics of a disease.
- Circadian modulation of the estrogen receptor alpha transcriptionVilla, Linda Monique (Virginia Tech, 2012-07-12)The circadian clock is a molecular mechanism that synchronizes physiological changes with environmental variations. Disruption of the circadian clock has been linked to increased risk in diseases and a number of disorders (e.g. jet lag, insomnia, and cancer). Period 2 (Per2), a circadian protein, is at the center of the clock's function. The loss or deregulation of per2 has been shown to be common in several types of cancer including breast and ovarian [1, 2]. Epidemiological studies established a correlation between circadian disruption and the development of estrogen dependent tumors. The expression of estrogen receptor alpha (ERα) mRNA oscillates in a 24-hour period and, unlike Per2, ERα peaks during the light phase of the day. Because up regulation of ERα relates to tumor development, defining the mechanisms of ERα expression will contribute to our comprehension of cellular proliferation and regulation of normal developmental processes. The overall goal of this project is to investigate the molecular basis for circadian control of ERα transcription. Transcriptional activation of ERα was measured using a reporter system in Chinese hamster ovary (CHO) cell lines. Data show that Per2 influences ERα transcription through a non-canonical mechanism independent of its circadian counterparts. Breast cancer susceptibility protein 1 (BRCA1) was confirmed to be an interactor of Per2 via bacterial two-hybrid assays, in accordance with previous studies [2]. BRCA1 is a transcriptional activator of ERα promoter in the presence of octamer transcription factor-1 (OCT-1) [3]. Our results indicate that the DNA binding domain of OCT-1, POU, to directly interact with Per2 and BRCA1, in vitro. Pull-down assays were used to map direct interaction of various Per2 and BRCA1 recombinant proteins and POU. Chromatin immunoprecipitation assays confirmed the recruitment of PER2 and BRCA1 to the estrogen promoter by OCT-1 and the recruitment of Per2 to the ERα promoter decreases ERα mRNA expression levels in MCF-7 cells. Our work supports a circadian regulation of ERα through the repression of esr1 by Per2 in MCF-7 cells.
- Factors Affecting the Heat Resistance of Clostridium perfringens SporesOrsburn, Benjamin (Virginia Tech, 2009-05-04)The bacterium Clostridium perfringens is a gram-positive anaerobe responsible for many diseases in man and other animals, the most common of which is acute food poisoning (AFP). It is estimated that nearly 240,000 cases of AFP occur each year in the U.S. The C. perfringens spore plays an important role in this infection. The heat resistance of the spore allows the organism to survive the cooking process, grow in the cooling food, and infect the victim. Despite the occurrence of this disease and the importance of the spore to this process, little work has been performed to determine how heat resistance is obtained and maintained by C. perfringens spores. In this work we study the spores and sporulation process of C. perfringens to determine what factors are most important in the formation of a heat resistant spore. We analyzed the spores produced by nine wild-type strains, including five heat-resistant food poisoning isolates and four less heat-resistant environmental isolates. We determined that threshold core density and a high ratio of cortex peptidoglycan relative to germ cell wall were necessary components of a highly heat-resistant spore. In order to test these observations, we constructed two mutant strains. The first could not achieve the necessary level of core dehydration and rapidly lysed in solution. The second mutant had a reduced amount of cortex relative to germ cell wall, and suffered a corresponding decrease in heat resistance as compared to our wild-type strains. The mutant strains supported the observations drawn from our wild-type strains. Dipicolinic acid is a major component of bacterial spores and is necessary for spore heat resistance. The Cluster I clostridia, including C. perfringens, lack the known DPA synthase operon, spoVF. We developed an in vitro assay for detecting DPA synthetase activity and purified the active enzyme from sporulating C. perfringens crude extract and identified the proteins with mass spectrometry. These results identified the electron transfer flavoprotein alpha chain (EtfA) as the DPA synthase of C. perfringens. Inactivating the etfA gene in C. perfringens resulted in a strain that could begin, but not complete, the sporulation process and produced dramatically lower amounts of DPA than the wild-type. The purified enzyme was shown to produce DPA in vitro and utilized FAD as a preferred cofactor. The results of this research may lead to future techniques to decrease the occurrence of the diseases caused by C. perfringens spores and treatments which may carry over to the diseases caused by similar organisms.
- Incorporation of Physico-Chemical Parameters Into Design of Microarray ExperimentsRatushna, Vladyslava G. (Virginia Tech, 2005-05-06)Microarrays containing long oligonucleotides provide sensitive and specific detection of gene expression and are becoming a popular experimental platform. In the process of designing an oligonucleotide microarray for Brucella, we optimized the overall design of the array and created probes to distinguish among the known Brucella species. A 3-way genome comparison identified a set of genes which occur uniquely in only one or two of the sequenced Brucella genomes. Reverse transcriptase PCR assays of over one hundred unique and pairwise-differential regions identified in Brucella revealed several groups of genes that are transcribed in vivo with potential significance for virulence. The structural and thermodynamic properties of a set of 70mer oligonucleotide probes for a combined B. abortus, B. melitensis and B. suis microarray were modeled to help perform quantitative interpretation of the microarray data. Prediction and thermodynamic analysis of secondary structure formation in a genome-wide set of transcripts from Brucella suis 1330 demonstrated that properties of the target molecule have the potential to strongly influence the rate and extent of hybridization between transcript and an oligonucleotide probe in a microarray experiment. Despite relatively high hybridization temperatures used in the modeling process, parts of the target molecules are predicted to be inaccessible to intermolecular hybridization due to the formation of stable intramolecular secondary structure. Features in the Brucella genomes with potential diagnostic use were identified, and the extent to which target secondary structure, a molecular property which is not considered in the array design process, may influence the quality of results was characterized.
- Insulin stimulated MCF7 breast cancer cells: Proteome datasetSarvaiya, Hetal A.; Lazar, Iuliana M. (Elsevier, 2016-09-22)The proteome data provided in this article were acquired from MCF7 breast cancer cells stimulated with insulin, and were generated by using a 2D-SCX (strong cation exchange)/RPLC (reversed phase liquid chromatography) separation protocol followed by tandem mass spectrometry (MS) detection. To facilitate data reprocessing by more advanced search engines and the extraction of additional information from already existing files, both raw and processed data are provided. The sample preparation, data acquisition and processing protocols are described in detail. The raw data relate to work published in “Proteome profile of the MCF7 cancer cell line: a mass spectrometric evaluation” (Sarvaiya et al., 2006) [1] and are made available through the PRIDE (PRoteomics IDEntifications)/ProteomeXchange public repository with identifier PRIDE: PXD004051 (“2016 update of the PRIDE database and tools” (Vizcaino et al., 2016) [2]).
- Investigation of in-situ nanoimprinting of cell surface receptors: potential of a novel technique in biomarker researchAhmed, Sadia (Virginia Tech, 2019-01-22)Biomarkers are biological characteristics that can be observed or measured during disease conditions, and compared to the healthy state. Biomarkers have been used in medical history to study disease progression, to develop drugs, or to predict drug efficacy. However, in complex diseases such as in cancer, biomarkers vary tremendously among patients and disease stages. Cell surface receptors, proteins that are located at the cell surface and deliver external signals into the cell, are a significant group of easily-detectable biomarkers. Along with the detection of particular biomarkers related to a disease, extensive characterization of expression patterns is necessary to optimize their application. Therefore, we designed a technique to imprint or capture the expression pattern of these receptors on silver nanoparticles. We incorporated branched molecules that can simultaneously bind to the target receptors and the nanoparticle surface. To develop the technique, we used melanocortin receptor 1 (MC1R), a receptor present at high levels on the surface of melanoma cells, as a test system. We determined optimum binding of this molecule in an established melanoma cell line, WM-266-4. We also synthesized a labeled molecule that was used to estimate the number of MC1R proteins on these cells. These studies indicate that this might be a promising approach for developing sensitive and cost-effective tools to characterize cell surface receptors in studying complex diseases and cell mechanisms.
- Is the presence of biomolecules evidence for molecular preservation in the fossil record?Colleary, Caitlin (Virginia Tech, 2019-05-06)The molecular components of life (i.e., biomolecules such as DNA, proteins, lipids) have the potential to preserve in animals that have been extinct for millions of years, offering a scale of analysis previously inaccessible from the fossil record. As new technology (e.g., high resolution mass spectrometry) has been incorporated into fossil analyses, researchers have begun to detect biomolecules in terrestrial vertebrates dating back to the Triassic Period (~230 Ma). However, these biomolecules have not been demonstrated to be the biological remains of these ancient animals and may instead be exogenous organic contaminants. Here, I developed a series of analytical techniques to detect and interpret the preservation of the degraded remains of the most common protein in bone, collagen, in terrestrial vertebrates from two time slices that represent the two ends of the preservation spectrum: a "shallow time" study of fossils <150,000 years old from different burial environments (i.e., permafrost, fluvial and hot springs) and a deep time study of dinosaurs (~212 - 66 Ma) from the same burial environment (i.e., fluvial), representing the current limit of the reported protein preservation in the fossil record. Unlike previous studies that have focused on organic extractions to detect biomolecules, I studied intact fossil bones and the rocks they were found in, to understand more about the effect of burial conditions on preservation and potential alternative sources of organic compounds. I found endogenous amino acids (the degradation products of proteins) and lipids in the mammoth bones, although they were already heavily degraded in fluvial environments, even on such short timescales. I also found that there were amino acids and lipids preserved in the dinosaur bones, however tests on the age of the amino acids and the types of lipids present, demonstrate that they are not original to the animals in this study. Therefore, fluvial environments, one of the most common depositional environments preserved in the geologic record, are not conducive to the preservation of proteins on long timescales and researchers should be cautious when using these biomolecules to make interpretations about the biology of ancient animals.
- Mass Spectrometric Characterization of the MCF7 Cancer Cell Line: Proteome Profile and Cancer BiomarkersSarvaiya, Hetal Abhijeet (Virginia Tech, 2006-04-18)The discovery of cancer biomarkers is crucial in the clinical setting to facilitate early diagnosis and treatment, thereby increasing survival rates. Proteomic technologies with mass spectrometry detection (MS) have the potential to affect the entire spectrum of cancer research by identifying these biomarkers. Simultaneously, microfabricated devices have evolved into ideal analysis platforms for minute amounts of sample, with promising applications for proteomic investigations and future biomarker screening. This thesis reports on the analysis of the proteomic constituents of the MCF7 breast cancer cell line using a shotgun 2-D strong cationic exchange/reversed phase liquid chromatography electrospray ionization tandem mass spectrometry (SCX/RP-LC-ESI-MS/MS) protocol. A series of optimization strategies were performed to improve the LC-MS experimental set-up, sample preparation, data acquisition and database searching parameters, and to enable the detection and confident identification of a large number of proteins. Over ~4,500 proteins were identified using conventional filtering parameters, and >2000 proteins using a combination of filters and p-value sorting. Of these, ~1,950 proteins had p<0.001 (~90%) and more than half were identified by ≥ 2 unique peptides. About 220 proteins were functionally involved in cancer related cellular processes, and over 100 proteins were previously described in the literature as potential cancer markers. Biomarkers such as PCNA, cathepsin D, E-cadherin, 14-3-3-sigma, antigen Ki-67, TP53RK, and calreticulin were identified. These data were generated by subjecting to mass spectrometric analysis ~42 µg of protein digest, analyzing 16 SCX peptide fractions, and interpreting ~55,000 MS2 spectra. Total MS time required for analysis was 40 h. Selective SCX fractions were also analyzed by using a microfluidic LC platform. The performance of the microchip LC was comparable to that obtained with bench-top instrumentation when similar experimental conditions were used. The identification of 5 cancer biomarkers was enabled by using the microchip LC platform. Furthermore, this device was also capable to analyze phosphopeptides.
- Microfluidic Approaches for Probing Protein Phosphorylation in CellsDeng, Jingren (Virginia Tech, 2018-07-31)Protein phosphorylation plays critical roles in diverse cellular functions, including cell cycle, growth, differentiation, and apoptosis. Deregulated phospho-signaling is often associated with many human diseases and cancers. Despite tremendous efforts to investigate the molecular mechanisms that control the functionality of phospho-signaling pathways, only limited progress has been made on describing the temporal and spatial profiles of cellular protein phosphorylation. The main challenges associated with the study of phospho-signaling processes in cells are related to the short time-scale of certain phosphorylation and dephosphorylation events, the low abundance of the phosphorylated protein forms as compared to their non-phosphorylated counterparts, the complicated and time-consuming sample preparation methods that are accompanying such type of work, and, last, the performance of the detection methods that are suitable for assessing protein phosphorylation. To tackle the challenges associated with the investigation of protein phosphorylation in cells, our objective was to develop a combined mass spectrometry (MS) and microfluidics strategy that enables fast sampling and sensitive detection of key signaling phosphoproteins in complex biological samples. MS is the most widely used analytical tool in the field of proteomics due to its high sensitivity, specificity, and throughput. Microfluidics has been proven as a suitable platform for handling small volumes of scarce samples, being also amenable to automation, integration, and multiplexing. To achieve our objective, this study was conducted in multiple steps: (1) We performed a comprehensive analysis of the factors that affect the performance of mass spectrometry detection (i.e., sensitivity, reproducibility, ability to accurately identify a large number of proteins from complex samples), when used in conjunction with technologies that are conducted in a non-standard fashion, on short time-scales; (2) We developed and evaluated a miniaturized strategy for rapid proteolytic digestion and phosphopeptide enrichment; (3) We demonstrated sensitive detection and quantification of phosphopeptides from complex biological samples using multiple reaction monitoring mass spectrometry (MRM-MS) and microfluidic sample processing; and (4) We developed a microfluidic platform for handling and processing cells that enables the investigation of biological processes that occur on short time-scales, and that can be integrated with the devices developed for the analysis of phospho-proteins. SKBR3 cells were used as a model system for developing and demonstrating the microfluidic chips. The detection and quantification of phospho-proteins involved in MAPK (mitogen activated protein kinase) signaling pathways was achieved at the low nM level. Overall, this study demonstrates proof-of-concept applicability of a microfluidics-MS strategy for monitoring phosphorylation processes in signaling networks.
- Microfluidic devices and methods facilitating high-throughput, on-chip detection and separation techniques(United States Patent and Trademark Office, 2010-06-29)The present invention provides a microfluidic device and method for facilitating on-chip complex sample processing and detection. In general, the device comprises at least a separation channel of a separation system, an interface, and an array of microreservoirs disposed within the same chip. The interface is configured to orthogonally transfer separated components from the separation channel into the array of microreservoirs, enabling direct analyte detection from the chip and high-throughput analysis.
- Microfluidic LC Device with Orthogonal Sample Extraction for On-Chip MALDI-MS DetectionLazar, Iuliana M.; Kabulski, Jarod L. (The Royal Society of Chemistry, 2013-03-20)A microfluidic device that enables on-chip matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) detection for liquid chromatography (LC) separations is described. The device comprises an array of functional elements to carry out LC separations, integrates a novel microchip-MS interface to facilitate the orthogonal transposition of the microfluidic LC channel into an array of reservoirs, and enables sensitive MALDI-MS detection directly from the chip. Essentially, the device provides a snapshot MALDI-MS map of the content of the separation channel present on the chip. The detection of proteins with biomarker potential from MCF10A breast epithelial cell extracts, and detection limits in the low fmol range, are demonstrated. In addition, the design of the novel LC-MALDI-MS chip entices the promotion of a new concept for performing sample separations within the limited time-frame that accompanies the dead-volume of a separation channel.
- Microfluidic reactors for advancing the MS analysis of fast biological responsesLazar, Iuliana M.; Deng, J.; Stremler, Mark A.; Ahuja, Shreya (Nature Publishing Group, 2019-02-11)The response of cells to physical or chemical stimuli is complex, unfolding on time-scales from seconds to days, with or without de novo protein synthesis, and involving signaling processes that are transient or sustained. By combining the technology of microfluidics that supports fast and precise execution of a variety of cell handling operations, with that of mass spectrometry detection that facilitates an accurate and complex characterization of the protein complement of cells, in this work, we developed a platform that supports (near) real-time sampling and proteome-level capturing of cellular responses to a perturbation such as treatment with mitogens. The geometric design of the chip supports three critical features: (a) capture of a sufficient number of cells to meet the detection limit requirements of mass spectrometry instrumentation, (b) fluid delivery for uniform stimulation of the resident cells, and (c) fast cell recovery, lysis and processing for accurate sampling of time-sensitive cellular responses to a stimulus. COMSOL simulations and microscopy were used to predict and evaluate the flow behavior inside the microfluidic device. Proteomic analysis of the cellular extracts generated by the chip experiments revealed that the identified proteins were representative of all cellular locations, exosomes, and major biological processes related to proliferation and signaling, demonstrating that the device holds promising potential for integration into complex lab-on-chip work-flows that address systems biology questions. The applicability of the chips to study time-sensitive cellular responses is discussed in terms of technological challenges and biological relevance. © 2019, The Author(s).
- MRM screening/biomarker discovery with linear ion trap MS: a library of human cancer-specific peptidesYang, Xu; Lazar, Iuliana M. (Biomed Central, 2009-03-27)Background The discovery of novel protein biomarkers is essential in the clinical setting to enable early disease diagnosis and increase survivability rates. To facilitate differential expression analysis and biomarker discovery, a variety of tandem mass spectrometry (MS/MS)-based protein profiling techniques have been developed. For achieving sensitive detection and accurate quantitation, targeted MS screening approaches, such as multiple reaction monitoring (MRM), have been implemented. Methods MCF-7 breast cancer protein cellular extracts were analyzed by 2D-strong cation exchange (SCX)/reversed phase liquid chromatography (RPLC) separations interfaced to linear ion trap MS detection. MS data were interpreted with the Sequest-based Bioworks software (Thermo Electron). In-house developed Perl-scripts were used to calculate the spectral counts and the representative fragment ions for each peptide. Results In this work, we report on the generation of a library of 9,677 peptides (p < 0.001), representing ~1,572 proteins from human breast cancer cells, that can be used for MRM/MS-based biomarker screening studies. For each protein, the library provides the number and sequence of detectable peptides, the charge state, the spectral count, the molecular weight, the parameters that characterize the quality of the tandem mass spectrum (p-value, DeltaM, Xcorr, DeltaCn, Sp, no. of matching a, b, y ions in the spectrum), the retention time, and the top 10 most intense product ions that correspond to a given peptide. Only proteins identified by at least two spectral counts are listed. The experimental distribution of protein frequencies, as a function of molecular weight, closely matched the theoretical distribution of proteins in the human proteome, as provided in the SwissProt database. The amino acid sequence coverage of the identified proteins ranged from 0.04% to 98.3%. The highest-abundance proteins in the cellular extract had a molecular weight (MW)<50,000. Conclusion Preliminary experiments have demonstrated that putative biomarkers, that are not detectable by conventional data dependent MS acquisition methods in complex un-fractionated samples, can be reliable identified with the information provided in this library. Based on the spectral count, the quality of a tandem mass spectrum and the m/z values for a parent peptide and its most abundant daughter ions, MRM conditions can be selected to enable the detection of target peptides and proteins.
- Preferential phosphatidylinositol 5-phosphate binding contributes to a destabilization of the VHS domain structure of Tom1Xiong, Wen; Tang, Tuo-Xian; Littleton, Evan S.; Karcini, Arba; Lazar, Iuliana M.; Capelluto, Daniel G. S. (Springer Nature, 2019-07-26)Tom1 transports endosomal ubiquitinated proteins that are targeted for degradation in the lysosomal pathway. Infection of eukaryotic cells by Shigella flexneri boosts oxygen consumption and promotes the synthesis of phosphatidylinositol-5-phosphate (PtdIns5P), which triggers Tom1 translocation to signaling endosomes. Removing Tom1 from its cargo trafficking function hinders protein degradation in the host and, simultaneously, enables bacterial survival. Tom1 preferentially binds PtdIns5P via its VHS domain, but the effects of a reducing environment as well as PtdIns5P on the domain structure and function are unknown. Thermal denaturation studies demonstrate that, under reducing conditions, the monomeric Tom1 VHS domain switches from a three-state to a two-state transition behavior. PtdIns5P reduced thermostability, interhelical contacts, and conformational compaction of Tom1 VHS, suggesting that the phosphoinositide destabilizes the protein domain. Destabilization of Tom1 VHS structure was also observed with other phospholipids. Isothermal calorimetry data analysis indicates that, unlike ubiquitin, Tom1 VHS endothermically binds to PtdIns5P through two noncooperative binding sites, with its acyl chains playing a relevant role in the interaction. Altogether, these findings provide mechanistic insights about the recognition of PtdIns5P by the VHS domain that may explain how Tom1, when in a different VHS domain conformational state, interacts with downstream effectors under S. flexneri infection.
- Proteogenomic Analysis of Protein Sequence Alterations in Breast Cancer CellsLazar, Iuliana M.; Karcini, Arba; Ahuja, Shreya; Estrada-Palma, Carly (Nature Research, 2019-07-18)Cancer evolves as a result of an accumulation of mutations and chromosomal aberrations. Developments in sequencing technologies have enabled the discovery and cataloguing of millions of such mutations. The identification of protein-level alterations, typically by using reversed-phase protein arrays or mass spectrometry, has lagged, however, behind gene and transcript-level observations. In this study, we report the use of mass spectrometry for detecting the presence of mutations-missense, indels and frame shifts-in MCF7 and SKBR3 breast cancer, and non-tumorigenic MCF10A cells. The mutations were identified by expanding the database search process of raw mass spectrometry files by including an in-house built database of mutated peptides (XMAn-v1) that complemented a minimally redundant, canonical database of Homo sapiens proteins. The work resulted in the identification of nearly 300 mutated peptide sequences, of which ~50 were characterized by quality tandem mass spectra. We describe the criteria that were used to select the mutated peptide sequences, evaluate the parameters that characterized these peptides, and assess the artifacts that could have led to false peptide identifications. Further, we discuss the functional domains and biological processes that may be impacted by the observed peptide alterations, and how protein-level detection can support the efforts of identifying cancer driving mutations and genes. Mass spectrometry data are available via ProteomeXchange with identifier PXD014458.
- Proteomic Analysis of the Flavonoid Biosynthetic Machinery in Arabidopsis ThalianaVaghela, Nileshwari (Virginia Tech, 2007-08-28)Work on a wide variety of metabolic pathways indicates that these systems are often, if not always, organized as multienzyme complexes. Enzyme complexes have the potential to increase catalytic efficiency and provide unique mechanisms for the regulation of cellular metabolism. The flavonoid biosynthetic pathway of Arabidopsis is an excellent model for studying the organization, localization, and regulation of enzyme complexes at the cellular level. Flavonoids are specialized metabolites that perform many important physiological roles in plants. Protein interactions among several key flavonoid enzymes have been described. Moreover, at least two of the flavonoid enzymes have a dual cytoplasmic/nuclear localization. These results indicate that flavonoid enzymes assemble into one or more distinct complexes at different intracellular locations. The current study integrates a new technology, mass spectrometry, with well-established affinity chromatography methods to further characterize the organization and composition of the Arabidopsis flavonoid enzyme complex. One of the key flavonoid enzymes, chalcone isomerase (CHI), was used in these experiments to detect interacting enzymes. Recombinant thioredoxin (TRX), or TRX-CHI, was produced in E. coli, then purified by metal affinity chromatography, and covalently coupled to an activated resin, Affi-Gel 10. Extracts prepared from 4-day-old wild type or CHI-deficient lines of Arabidopsis were then passed over the column and the bound proteins eluted with sodium dedocyl sulfate (SDS). This eluate was then subjected to a liquid chromatography (LC) - mass spectrometry (MS) protocol developed for the analysis of complex peptide mixtures. An Agilent LC system coupled with an LTQ-MS instrument (Thermo Electron, San Jose, CA) was used for this purpose. Data analysis was performed with the Bioworks software package. Different optimization strategies were performed to improve the affinity chromatography, sample preparation, and the LC separation method. A novel approach has been developed for the MS analysis of biological samples containing contaminants such as salts and detergents. Protein extracts prepared from wild type Landsburg and mutant tt5(86) were analyzed by LC-MS/MS. A total of 491 proteins were identified for Landsburg and 633 for tt5(86) extracts using a combination of data filters and p-value sorting. All detected proteins had p<0.001 and most were identified by at least 2 unique peptides.
- Proteomic Map of ER+ Breast Cancer Cell CycleTenga, Milagros Jannet (Virginia Tech, 2012-05-01)Cancer is characterized by a deregulation of the cell cycle resulting in abnormal proliferation of cells that can bypass tightly regulated molecular checkpoints. Breast cancer is the most common cancer diagnosed in women, ~70% of cases displaying an estrogen receptor positive (ER+) phenotype. The aim of the present work was to generate a comprehensive overview of the biological mechanisms, molecular pathways and specific proteins involved in cell cycle progression in ER+ breast cancer cells. We focused on the G1-to-S phase transition of the cell cycle because major differences in cell proliferation mechanisms between normal and cancerous cells are observed at this point. We developed a large-scale proteomics strategy to enable the comparison of MCF-7 ER+ (cancer) and MCF-10A (non-tumorigenic) epithelial breast cells. Samples were analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) followed by a label-free quantitation approach, i.e., spectral counting, for differential protein expression analysis. The study was divided into three distinct parts: 1) qualitative profiling of MCF-7 cells arrested in the G1-phase and released into the S-phase of the cell cycle, 2) differential expression profiling of MCF-7 cells in G1 and S, and 3) differential expression profiling of the G1-phases of MCF-7 and MCF-10A cells. The qualitative evaluation of MCF-7 proteomic data resulted in the identification of >2700 proteins (p-score<0.001). A large number of these proteins were involved in cell cycle relevant processes, being representative of all hallmarks of cancer. Differential expression analysis of the MCF-7 G1 and S-phases resulted in the identification of >250 proteins with roles in DNA repair, transcription, translation, chromatin maintenance and signaling. The MCF-7/MCF-10 comparison revealed that major cellular processes that require DNA access, such as the ones identified in the MCF-7 analysis, are up-regulated in the nucleus of MCF-7 cells during starvation, possibly allowing these cancerous cells to bypass the restriction point. Several proliferative and anti-proliferative markers were identified in both MCF-7 and MCF-10A cells.
- Proteomic study reveals a functional network of cancer markers in the G1-Stage of the breast cancer cell cycleTenga, Milagros J.; Lazar, Iuliana M. (BioMed Central, 2014)Background: Cancer cells are characterized by a deregulated cell cycle that facilitates abnormal proliferation by allowing cells to by-pass tightly regulated molecular checkpoints such as the G1/S restriction point. To facilitate early diagnosis and the identification of new drug targets, current research efforts focus on studies that could lead to the development of protein panels that collectively can improve the effectiveness of our response to the detection of a life-threatening disease. Methods: Estrogen-responsive MCF-7 cells were cultured and arrested by serum deprivation in the G1-stage of the cell cycle, and fractionated into nuclear and cytoplasmic fractions. The protein extracts were trypsinized and analyzed by liquid chromatography - mass spectrometry (MS), and the data were interpreted with the Thermo Electron Bioworks software. Biological characterization of the data, selection of cancer markers, and identification of protein interaction networks was accomplished with a combination of bioinformatics tools provided by GoMiner, DAVID and STRING. Results: The objective of this work was to explore via MS proteomic profiling technologies and bioinformatics data mining whether randomly identified cancer markers can be associated with the G1-stage of the cell cycle, i.e., the stage in which cancer cells differ most from normal cells, and whether any functional networks can be identified between these markers and placed in the broader context of cell regulatory pathways. The study enabled the identification of over 2000 proteins and 153 cancer markers, and revealed for the first time that the G1-stage of the cell cycle is not only a rich source of cancer markers, but also a host to an intricate network of functional relationships within the majority of these markers. Three major clusters of interacting proteins emerged: (a) signaling, (b) DNA repair, and (c) oxidative phosphorylation. Conclusions: The identification of cancer marker regulatory components that act not alone, but within networks, represents an invaluable resource for elucidating the moxlecular mechanisms that govern the uncontrolled proliferation of cancer cells, as well as for catalyzing the development of protein panels with biomarker and drug target potential, screening tests with improved sensitivity and specificity, and novel cancer therapies aimed at pursuing multiple drug targets.