Browsing by Author "Lee, Andrew H."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Compositional Characterization of Different Industrial White and Red Grape Pomaces in Virginia and the Potential Valorization of the Major ComponentsJin, Qing; O’Hair, Joshua; Stewart, Amanda C.; O'Keefe, Sean F.; Neilson, Andrew P.; Kim, Young Teck; McGuire, Megan N.; Lee, Andrew H.; Wilder, Geoffrey; Huang, Haibo (MDPI, 2019-12-11)To better evaluate potential uses for grape pomace (GP) waste, a comprehensive chemical composition analysis of GP in Virginia was conducted. Eight commercial white and red pomace samples (cv. Viognier, Vidal Blanc, Niagara, Petit Manseng, Petit Verdot, Merlot, Cabernet Franc, and Chambourcin) obtained from different wineries in Virginia, USA were used. For extractives, GPs contained 2.89%–4.66% titratable acids, 4.32%–6.60% ash, 4.62%–12.5% lipids with linoleic acid being the predominant (59.0%–70.9%) fatty acid, 10.4–64.8 g total phenolic content (gallic acid equivalents)/kg GP, 2.09–53.3 g glucose/kg GP, 3.79–52.9 g fructose/kg GP, and trace sucrose. As for non-extractives, GPs contained 25.2%–44.5% lignin, 8.04%–12.7% glucan, 4.42%–7.05% xylan, and trace amounts of galactan, arabinan, and mannan (less than 3% in total). Potential usages of these components were further examined to provide information on better valorization of GP. Considering the valuable extractives (e.g., polyphenols and oil) and non-extractives (e.g., lignin), designing a biorefinery process aiming at fully recover and/or utilize these components is of future significance.
- Development and Characterization of a Pilot-Scale Model Cocoa Fermentation System Suitable for Studying the Impact of Fermentation on Putative Bioactive Compounds and Bioactivity of CocoaRacine, Kathryn C.; Lee, Andrew H.; Wiersema, Brian D.; Huang, Haibo; Lambert, Joshua D.; Stewart, Amanda C.; Neilson, Andrew P. (MDPI, 2019-03-19)Cocoa is a concentrated source of dietary flavanols—putative bioactive compounds associated with health benefits. It is known that fermentation and roasting reduce levels of native flavonoids in cocoa, and it is generally thought that this loss translates to reduced bioactivity. However, the mechanisms of these losses are poorly understood, and little data exist to support this paradigm that flavonoid loss results in reduced health benefits. To further facilitate large-scale studies of the impact of fermentation on cocoa flavanols, a controlled laboratory fermentation model system was increased in scale to a large (pilot) scale system. Raw cocoa beans (15 kg) were fermented in 16 L of a simulated pulp media in duplicate for 168 h. The temperature of the fermentation was increased from 25–55 °C at a rate of 5 °C/24 h. As expected, total polyphenols and flavanol levels decreased as fermentation progressed (a loss of 18.3% total polyphenols and 14.4% loss of total flavanols during fermentation) but some increases were observed in the final timepoints (120–168 h). Fermentation substrates, metabolites and putative cocoa bioactive compounds were monitored and found to follow typical trends for on-farm cocoa heap fermentations. For example, sucrose levels in pulp declined from >40 mg/mL to undetectable at 96 h. This model system provides a controlled environment for further investigation into the potential for optimizing fermentation parameters to enhance the flavanol composition and the potential health benefits of the resultant cocoa beans.
- Evidence for Regulation of Hemoglobin Metabolism and Intracellular Ionic Flux by the Plasmodium falciparum Chloroquine Resistance TransporterLee, Andrew H.; Dhingra, Satish K.; Lewis, Ian A.; Singh, Maneesh K.; Siriwardana, Amila; Dalal, Seema; Rubiano, Kelly; Klein, Matthias S.; Baska, Katelynn S.; Krishna, Sanjeev; Klemba, Michael; Roepe, Paul D.; Llinas, Manuel; Garcia, Celia R. S.; Fidock, David A. (Springer Nature, 2018-09-11)Plasmodium falciparum multidrug resistance constitutes a major obstacle to the global malaria elimination campaign. Specific mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) mediate resistance to the 4-aminoquinoline drug chloroquine and impact parasite susceptibility to several partner agents used in current artemisinin-based combination therapies, including amodiaquine. By examining gene-edited parasites, we report that the ability of the widespread Dd2 PfCRT isoform to mediate chloroquine and amodiaquine resistance is substantially reduced by the addition of the PfCRT L272F mutation, which arose under blasticidin selection. We also provide evidence that L272F confers a significant fitness cost to asexual blood stage parasites. Studies with amino acid-restricted media identify this mutant as a methionine auxotroph. Metabolomic analysis also reveals an accumulation of short, hemoglobin-derived peptides in the Dd2 + L272F and Dd2 isoforms, compared with parasites expressing wild-type PfCRT. Physiologic studies with the ionophores monensin and nigericin support an impact of PfCRT isoforms on Ca2+ release, with substantially reduced Ca2+ levels observed in Dd2 + L272F parasites. Our data reveal a central role for PfCRT in regulating hemoglobin catabolism, amino acid availability, and ionic balance in P. falciparum, in addition to its role in determining parasite susceptibility to heme-binding 4-aminoquinoline drugs.
- Flavanol Polymerization Is a Superior Predictor of α-Glucosidase Inhibitory Activity Compared to Flavanol or Total Polyphenol Concentrations in Cocoas Prepared by Variations in Controlled Fermentation and Roasting of the Same Raw Cocoa BeansRacine, Kathryn C.; Wiersema, Brian D.; Griffin, Laura E.; Essenmacher, Lauren A.; Lee, Andrew H.; Hopfer, Helene; Lambert, Joshua D.; Stewart, Amanda C.; Neilson, Andrew P. (MDPI, 2019-12-11)Raw cocoa beans were processed to produce cocoa powders with different combinations of fermentation (unfermented, cool, or hot) and roasting (not roasted, cool, or hot). Cocoa powder extracts were characterized and assessed for α-glucosidase inhibitory activity in vitro. Cocoa processing (fermentation/roasting) contributed to significant losses of native flavanols. All of the treatments dose-dependently inhibited α-glucosidase activity, with cool fermented/cool roasted powder exhibiting the greatest potency (IC50: 68.09 µg/mL), when compared to acarbose (IC50: 133.22 µg/mL). A strong negative correlation was observed between flavanol mDP and IC50, suggesting flavanol polymerization as a marker of enhanced α-glucosidase inhibition in cocoa. Our data demonstrate that cocoa powders are potent inhibitors of α-glucosidase. Significant reductions in the total polyphenol and flavanol concentrations induced by processing do not necessarily dictate a reduced capacity for α-glucosidase inhibition, but rather these steps can enhance cocoa bioactivity. Non-traditional compositional markers may be better predictors of enzyme inhibitory activity than cocoa native flavanols.
- Impact of cocoa (Theobroma cacao L.) fermentation on composition and concentration of polyphenols: Development of fermentation model system and utilization of yeast starter culturesLee, Andrew H. (Virginia Tech, 2017-09-28)Consumption of cocoa and dark chocolate products has been associated with positive health outcomes including reduced onset of cardiovascular disease, inflammation, diabetes, obesity, and platelet disorders. Cocoa polyphenols, putatively responsible for these beneficial activities, are highly impacted by cocoa variety, agronomic effects and processing history. However, the difference in polyphenol concentration and composition between cocoa products originating from different hybrid clones (selected for high yield) or from different fermentation conditions is not fully understood. Detailed polyphenol characterization including determination of total polyphenol and total procyanidin concentrations, and qualitative and quantitative analysis of (mean) degree of polymerization was conducted. Significant differences in total polyphenol and procyanidin concentrations were observed between five genetic clones grown by the USDA-ARS Cocoa Germplasm Repository located in Mayagüez, Puerto Rico. To facilitate cocoa fermentation research in laboratories distant from cocoa harvesting sites, a laboratory-scale cocoa fermentation model system was developed in this study. This model system used dried, unfermented, cocoa beans and simulated pulp medium as the starting material. The model system supported growth of the essential succession of cocoa fermenting microorganisms and generated similar chemical changes to those observed in on-farm cocoa fermentation. Using this model system, the impact of inoculation with proprietary yeast strains Saccharomyces cerevisiae Lev F and Saccharomyces cerevisiae Lev B on cocoa polyphenol concentration and composition was evaluated. Inoculation with both yeast strains resulted in increased fermentation rate and Lev B inoculation resulted in higher total polyphenol and procyandin contents at the end of fermentation. Overall, the present work addressed the influence of cocoa variety selection and fermentation process conditions on the composition and concentration of polyphenols. These findings will contribute to continued efforts to develop cocoa products with optimized bioactivity and maximum disease preventative effects.