Browsing by Author "Lee, Cheolhei"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Failure-Averse Active Learning for Physics-Constrained SystemsLee, Cheolhei; Wang, Xing; Wu, Jianguo; Yue, Xiaowei (IEEE, 2022-10)Active learning is a subfield of machine learning that is devised for the design and modeling of systems with highly expensive sampling costs. Industrial and engineering systems are generally subject to physics constraints that may induce fatal failures when they are violated, while such constraints are frequently underestimated in active learning. In this paper, we develop a novel active learning method that avoids failures considering implicit physics constraints that govern the system. The proposed approach is driven by two tasks: safe variance reduction explores the safe region to reduce the variance of the target model, and safe region expansion aims to extend the explorable region. The integrated acquisition function is devised to conflate two tasks and judiciously optimize them. The proposed method is applied to the composite fuselage assembly process with consideration of material failure using the Tsai-Wu criterion, and it is able to achieve zero failure without the knowledge of explicit failure regions. Note to Practitioners—This paper is motivated by engineering systems with implicit physics constraints related to system failures. Implicit physics constraints refer to failure processes in which explicit analytic forms do not exist, so demanding numerical simulations or real experiments are required to check one’s safety. The main objective of this paper is to develop an active learning strategy that safely learns the target process in the system by minimizing failures without preliminary reliability analysis. The proposed method mainly targets real systems whose failure conditions are not thoroughly investigated or uncertain. We applied the proposed method to the predictive modeling of composite fuselage deformation in the aircraft manufacturing process, and it achieved zero failure in sampling by considering the composite failure criterion.
- Partitioned Active Learning for Heterogeneous SystemsLee, Cheolhei; Wang, Kaiwen; Wu, Jianguo; Cai, Wenjun; Yue, Xiaowei (ASME, 2023-08)Active learning is a subfield of machine learning that focuses on improving the data collection efficiency in expensive-to-evaluate systems. Active learning-applied surrogate modeling facilitates cost-efficient analysis of demanding engineering systems, while the existence of heterogeneity in underlying systems may adversely affect the performance. In this article, we propose the partitioned active learning that quantifies informativeness of new design points by circumventing heterogeneity in systems. The proposed method partitions the design space based on heterogeneous features and searches for the next design point with two systematic steps. The global searching scheme accelerates exploration by identifying the most uncertain subregion, and the local searching utilizes circumscribed information induced by the local Gaussian process (GP). We also propose Cholesky update-driven numerical remedies for our active learning to address the computational complexity challenge. The proposed method consistently outperforms existing active learning methods in three real-world cases with better prediction and computation time.