Browsing by Author "Lee, Gilsoo"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Green Small Cell Operation of Ultra-Dense Networks Using Device AssistanceLee, Gilsoo; Kim, Hongseok (MDPI, 2016-12-16)As higher performance is demanded in 5G networks, energy consumption in wireless networks increases along with the advances of various technologies, so enhancing energy efficiency also becomes an important goal to implement 5G wireless networks. In this paper, we study the energy efficiency maximization problem focused on finding a suitable set of turned-on small cell access points (APs). Finding the suitable on/off states of APs is challenging since the APs can be deployed by users while centralized network planning is not always possible. Therefore, when APs in small cells are randomly deployed and thus redundant in many cases, a mechanism of dynamic AP turning-on/off is required. We propose a device-assisted framework that exploits feedback messages from the user equipment (UE). To solve the problem, we apply an optimization method using belief propagation (BP) on a factor graph. Then, we propose a family of online algorithms inspired by BP, called DANCE, that requires low computational complexity. We perform numerical simulations, and the extensive simulations confirm that BP enhances energy efficiency significantly. Furthermore, simple, but practical DANCE exhibits close performance to BP and also better performance than other popular existing methods. Specifically, in a small-sized network, BP enhances energy efficiency 129%. Furthermore, in ultra-dense networks, DANCE algorithms successfully achieve orders of magnitude higher energy efficiency than that of the baseline.
- Online Optimization for Edge Computing under Uncertainty in Wireless NetworksLee, Gilsoo (Virginia Tech, 2020-04-24)Edge computing is an emerging technology that can overcome the limitations of centralized cloud computing by enabling distributed, low-latency computation at a network edge. Particularly, in edge computing, some of the cloud's functionalities such as storage, processing, and computing are migrated to end-user devices called edge nodes so as to reduce the round-trip delay needed to reach the cloud data center. Despite the major benefits and practical applications of using edge computing, one must address many technical challenges that include edge network formation, computational task allocation, and radio resource allocation, while considering the uncertainties innate in edge nodes, such as incomplete future information on their wireless channel gains and computing capabilities. The goal of this dissertation is to develop foundational science for the deployment, performance analysis, and low-complexity optimization of edge computing under the aforementioned uncertainties. First, the problems of edge network formation and task distribution are jointly investigated while considering a hybrid edge-cloud architecture under uncertainty on the arrivals of computing tasks. In particular, a novel online framework is proposed to form an edge network, distribute the computational tasks, and update a target competitive ratio defined as the ratio between the latency achieved by the proposed online algorithm and the optimal latency. The results show that the proposed framework achieves the target competitive ratio that is affected by the wireless data rate and computing speeds of edge nodes. Next, a new notion of ephemeral edge computing is proposed in which edge computing must occur under a stringent requirement on the total computing time period available for the computing process. To maximize the number of computed tasks in ephemeral edge networks under the uncertainty on future task arrivals, a novel online framework is proposed to enable a source edge node to offload computing tasks from sensors and allocate them to neighboring edge nodes for distributed task computing, within the limited total time period. Then, edge computing is applied for mobile blockchain and online caching systems, respectively. First, a mobile blockchain framework is designed to use edge devices as mobile miners, and the performance is analyzed in terms of the probability of forking event and energy consumption. Second, an online computational caching framework is designed to minimize the edge network latency. The proposed caching framework enables each edge node to store intermediate computation results (IRs) from previous computations and download IRs from neighboring nodes under uncertainty on future computation. Subsequently, online optimization is extended to investigate other edge networking applications. In particular, the problem of online ON/OFF scheduling of self-powered small cell base stations is studied, in the presence of energy harvesting uncertainty with the goal of minimizing the operational costs that consist of energy consumption and transmission delay of a network. Such a framework can enable the self-powered base stations to be functioned as energy-efficient edge nodes. Also, the problem of radio resource allocation is studied when a base station is assisted by self-powered reconfigurable intelligent surfaces (RIS). To this end, a deep reinforcement learning approach is proposed to jointly optimize the transmit power, phase shifting, and RIS reflector's ON/OFF states under the uncertainties on the downlink wireless channel information and the harvested energy at the RIS. Finally, the online problem of dynamic channel allocation is studied for full-duplex device-to-device (D2D) networks so that D2D users can share their data with a low communication latency when users dynamically arrive on the network. In conclusion, the analytical foundations and frameworks presented in this dissertation will provide key guidelines for effective design of edge computing in wireless networks.