Browsing by Author "Lee, Sang-Keon"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- An adaptive strategy for providing dynamic route guidance under non-recurrent traffic congestionLee, Sang-Keon (Virginia Tech, 1996-05-28)Traffic congestion on urban road networks has been recognized as one of the most serious problems with which modern cities are confronted. It is generally anticipated that Dynamic Route Guidance Systems (DRGS) will play an important role in reducing urban traffic congestion and improving traffic flows and safety. One of the most critical issues in designing these systems is in the development of optimal routing strategies that would maximize the benefits to overall system as well as individual users. Infrastructure based DRGS have advantage of pursuing system optimal routing strategy, which is more essential under abnormal traffic conditions such as non-recurrent congestion and natural disaster. However user compliance could be a problem under such a strategy, particularly when some of equipped drivers are urged not to choose minimum travel time path for the sake of improving the total network travel time. On the other hand, In-vehicle based DRGS can utilize the user-specified route selection criteria to avoid "Braess Paradox" under normal traffic conditions. However, it may be of little use under abnormal traffic conditions and high DRGS market penetration. In conducting the comparative analysis between system optimal strategy and user equilibrium strategy, significant differences were found within the mid-range traffic demand. The maximum total travel time difference occurs when the level of traffic demand is half of the system capacity. At this point, system optimal route guidance strategy can save more than 11% of the total travel time of user equilibrium route guidance strategy. The research proposes an adaptive routing strategy as an efficient dynamic route guidance under non-recurrent traffic congestion. Computation results show that there is no need to implement system optimal routing strategy at the initial stage of the incident. However, it is critical to use system optimal routing strategy as freeway and arterial are getting congested and the queue delay in freeway increases. The adaptive routing strategy is evaluated using Traffic simulation model, INTEGRATION. According to simulation results using an ideal network, the travel time saving ratio is maximum when both arterial and freeway have normal traffic demand under incident. In case of a realistic network, the adaptive routing strategy also proved to save the total travel time between 3% to 10% over the traditional user equilibrium routing strategy. The reduction of total travel time increases as the incident duration increases. Consequently, it is concluded that the adaptive routing strategy for DRGS is more efficient than using user equilibrium routing strategy alone.