Browsing by Author "Lee, Youngjae"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Effects of back-support exoskeleton use on lower limb joint kinematics and kinetics during level walkingPark, Jang-Ho; Lee, Youngjae; Madinei, Saman; Kim, Sun Wook; Nussbaum, Maury A.; Srinivasan, Divya (Springer, 2022-04-27)We assessed the effects of using a passive back-support exoskeleton (BSE) on lower limb joint kinematics and kinetics during level walking. Twenty young, healthy participants completed level walking trials while wearing a BSE (backXTM) with three different levels of hip-extension support torque (i.e., no torque, low, and high) and in a control condition (no-BSE). When hip extension torques were required for gait-initial 0-10% and final 75-100% of the gait cycle-the BSE with high supportive torque provided ~ 10 Nm of external hip extension torque at each hip, resulting in beneficial changes in participants' gait patterns. Specifically, there was a ~ 10% reduction in muscle-generated hip extension torque and ~ 15-20% reduction in extensor power. During the stance-swing transition, however, BSE use produced undesirable changes in lower limb kinematics (e.g., 5-20% increase in ankle joint velocity) and kinetics (e.g., ~ 10% increase in hip flexor, knee extensor, and ankle plantarflexor powers). These latter changes likely stemmed from the need to increase mechanical energy for propelling the leg into the swing phase. BSE use may thus increase the metabolic cost of walking. Whether such use also leads to muscle fatigue and/or postural instability in long-distance walking needs to be confirmed in future work.
- Effects of Fall Technique Training on Impact Forces when Falling from StandingLee, Youngjae (Virginia Tech, 2019-06-11)As falls and fall-related injuries are a major cause of injuries, the purpose of this study was to investigate whether, and to what extent, the stage combat fall technique training could reduce the impact forces of falls from standing. Twenty-six healthy young adults (14 males and 12 females) participated in our study, and were randomly assigned to either a training group or non-training (control) group. Both groups completed a pre-intervention and a post-intervention fall testing session, separated by two weeks, in which they performed naturalistic falls. The training group performed identical pre-intervention fall testing as the control group, and was then required to receive four 1-hour training sessions in the course of two weeks, led by a certified stage combat fall technique training instructor. The training group then completed a post-intervention fall testing session where they performed naturalistic falls and also falls using the fall technique they learned. Falls were induced in both forward and backward directions using a tether-release protocol. Differences between control and training groups at pre-training, and group differences in the change in dependent measures with training, were examined using Mann-Whitney U tests. The results showed that, following stage-combat fall training, the training group exhibited 32% and 35% reduction in median impact forces for forward and backward falls respectively, while the control group exhibited 5% and 2% reductions (p = 0.002 and <0.001). In addition, the training group showed shorter backward fall duration as well as longer impact time, larger impulse, and longer or larger center-of-pressure based measures for both directions of falling than the control group. However, training was not associated with reduced impact force during the naturalistic falls of the training group. To our knowledge, this was the first study to investigate the stage combat fall technique training and demonstrate its effectiveness as an intervention to reduce impact forces of falls, thereby exploring the potential to reduce the number of fall-related injuries. While these falls were induced from standing, whether these results would transfer to an unanticipated fall while walking due to a slip/trip remain to be explored.
- Gait kinematics when learning to use a whole-body powered exoskeletonPark, Hanjun; Lee, Youngjae; Kim, Sunwook; Nussbaum, Maury A.; Srinivasan, Divya (SAGE, 2021-09)
- Non-Treadmill Trip Training – Laboratory Efficacy, Validation of Inertial Measurement Units, and Tripping Kinematics in the Real WorldLee, Youngjae (Virginia Tech, 2024-06-05)Trip-induced falls are a leading cause of injuries among adults aged 65 years or older. Perturbation-based balance training (PBT) has emerged as an exercise-based fall prevention intervention and shown efficacy in reducing the risk of trip-induced falls. The broad goal of my PhD research was to advance the application of this so-called trip training through three studies designed to address existing knowledge gaps. First, trip training is commonly conducted with the aid of costly specialized treadmills to induce trip-like perturbations. An alternative version of trip training that eliminates the need for a treadmill would enhance training feasibility and enable wider adoption. The goal of the first study was to compare the effects of non-treadmill training (NT), treadmill training (TT), and a control (i.e., no training) on reactive balance after laboratory-induced trips among community-dwelling older adults. After three weeks of the assigned intervention, participants were exposed to two laboratory-induced trips while walking. Results showed different beneficial effects of NT and TT. For example, NT may be more beneficial in improving recovery step kinematics, while TT may be more beneficial in improving trunk kinematics, compared to the control. While the first study showed the effects of PBT on laboratory-induced trips, little is known about how such training affects responses to real-world trips. Responses to real-world trips may be captured using wearable inertial measurement units (IMUs), yet IMUs have not been adequately validated for this use. Therefore, the goal of the second study was to investigate the concurrent validity of IMU-based trunk kinematics against the gold standard optical motion capture (OMC)-based trunk kinematics after overground trips among community-dwelling older adults. During two laboratory-induced trips, participants wore two IMUs placed on the sternum and shoulder, and OMC markers placed at anatomical landmarks of the trunk segment. Results showed that IMU-based trunk kinematics differed between falls and recoveries after overground trips, and exhibited at least good correlation (Pearson's correlation coefficient, r > 0.5) with the gold standard OMC-based trunk kinematics. The goal of the third study was then to explore differences in tripping kinematics between the laboratory and real world using wearable IMUs among community-dwelling older adults. Participants were asked to wear three IMUs (for sternum and both feet) and a voice recorder to capture their responses to real-world losses of balance (LOBs) during their daily activities for three weeks. Results showed a higher variance in laboratory-induced trips than real-world trips, and the study demonstrated the feasibility of using IMUs and a voice recorder to understand the underlying mechanisms and context of real-world LOBs. Overall, this work was innovative by evaluating a non-treadmill version of trip training, establishing the validity of IMUs in capturing kinematic responses after overground trips, and applying IMUs and a voice recorder to assess tripping kinematics in the real world. The results from this work will advance the use of PBT to reduce the prevalence of trip-induced falls and to investigate the real-world effects of such trip training in future studies.
- A proposed methodology for trip recovery training without a specialized treadmillLee, Youngjae; Alexander, Neil B.; Madigan, Michael L. (Frontiers, 2022-11)Falls are the leading cause of accidental injuries among adults aged 65 years and older. Perturbation-based balance training is a novel exercise-based fall prevention intervention that has shown promise in reducing falls. Trip recovery training is a form of perturbation-based balance training that targets trip-induced falls. Trip recovery training typically requires the use of a specialized treadmill, the cost of which may present a barrier for use in some settings. The goal of this paper is to present a methodology for trip recovery training that does not require a specialized treadmill. A trial is planned in the near future to evaluate its effectiveness. If effective, non-treadmill trip recovery training could provide a lower cost method of perturbation-based balance training, and facilitate greater implementation outside of the research environment.
- Semantic Segmentation of Cabbage in the South Korea Highlands with Images by Unmanned Aerial VehiclesJo, Yongwon; Lee, Soobin; Lee, Youngjae; Kahng, Hyungu; Park, Seonghun; Bae, Seounghun; Kim, Minkwan; Han, Sungwon; Kim, Seoungbum (MDPI, 2021-05-14)Identifying agricultural fields that grow cabbage in the highlands of South Korea is critical for accurate crop yield estimation. Only grown for a limited time during the summer, highland cabbage accounts for a significant proportion of South Korea’s annual cabbage production. Thus, it has a profound effect on the formation of cabbage prices. Traditionally, labor-extensive and time-consuming field surveys are manually carried out to derive agricultural field maps of the highlands. Recently, high-resolution overhead images of the highlands have become readily available with the rapid development of unmanned aerial vehicles (UAV) and remote sensing technology. In addition, deep learning-based semantic segmentation models have quickly advanced by recent improvements in algorithms and computational resources. In this study, we propose a semantic segmentation framework based on state-of-the-art deep learning techniques to automate the process of identifying cabbage cultivation fields. We operated UAVs and collected 2010 multispectral images under different spatiotemporal conditions to measure how well semantic segmentation models generalize. Next, we manually labeled these images at a pixel-level to obtain ground truth labels for training. Our results demonstrate that our framework performs well in detecting cabbage fields not only in areas included in the training data but also in unseen areas not included in the training data. Moreover, we analyzed the effects of infrared wavelengths on the performance of identifying cabbage fields. Based on the results of our framework, we expect agricultural officials to reduce time and manpower when identifying information about highlands cabbage fields by replacing field surveys.
- Wearing a back-support exoskeleton impairs single-step balance recovery performance following a forward loss of balance – An exploratory studyPark, Jang-Ho; Lee, Youngjae; Madigan, Michael L.; Kim, Sunwook; Nussbaum, Maury A.; Srinivasan, Divya (Elsevier, 2022-11-01)Back-support exoskeletons (BSEs) are a promising ergonomic intervention for reducing physical demands on the low-back, but little is known regarding whether BSE use alters balance recovery following external perturbations. Hence, we investigated the effects of wearing a BSE on single-step balance recovery following a forward loss of balance. Sixteen (8 M, 8F) young, healthy participants were released from static forward-leaning postures and attempted to recover their balance with a single step while wearing a BSE (backXTM) with three different levels of support torque (i.e., no torque, low, and high) and in a control condition (no exoskeleton). Lean angle was increased until they failed in two consecutive trials to recover their balance with a single step. The maximum lean angle from which individuals could successfully recover was not significantly altered when wearing the BSE. However, wearing the BSE under all torque conditions increased reaction times. The BSE also impeded hip flexion (i.e., decrease in both peak hip flexion angle and angular velocity), resulting in decreased peak knee flexion velocity, knee range of motion, and step length. Measures of the margin of stability decreased significantly in the high-torque BSE condition. Overall, our results suggest that use of a BSE that provides external hip extension torque impairs balance recovery responses. Future work extending kinetic analyses to recovery responses, as well as a study of recovery when responding to slips and trips while walking, would offer a more complete picture of how a BSE may impact balance recovery following a loss of balance.
- Wrist-worn voice recorders capture the circumstances and context of losses of balance among community-dwelling older adultsLee, Youngjae; Alexander, Neil B.; Pompeii, Lisa; Nyquist, Linda V.; Madigan, Michael L. (Wiley, 2024-08-16)Background: Most falls among community-dwelling older adults are due to a loss of balance (LOB) after tripping or slipping. Unfortunately, limited insight is available on the detailed circumstances and context of these LOBs. Moreover, commonly used methods to collect this information is susceptible to limitations of memory recall. The goal of this pilot observational study was to explore the circumstances and context of self-reported LOBs captured by wristworn voice recorders among community-dwelling older adults. Methods: In this pilot observational cohort study, 30 community-dwelling adults with a mean (SD) age of 71.8 (4.4) years were asked to wear a voice recorder on their wrist daily for 3 weeks. Following any naturally-occurring LOB, participants were asked to record their verbal responses to six questions regarding the circumstances and context of each LOB abbreviated with the mnemonic 4WHO: When, Where, What, Why, How, and Outcome. Results: Participants wore the voice recorder 10.9 (0.6) hours per day for 20.7 (0.5) days. One hundred seventy-five voice recordings were collected, with 122 meeting our definition of a LOB. Each participant reported 0–23 LOBs over the 3 weeks or 1.4 (2.1) per participant per week. Across all participants, LOBs were most commonly reported 3 p.m. or later (42%), inside the home (39%), while walking (33%), resulting from a trip (54%), and having induced a stepping response to regain balance (48%). No LOBs resulted in a fall. Conclusions: Among community-dwelling older adults, wrist-worn voice recorders capture the circumstances and context of LOBs thereby facilitating the documentation of detail of LOBs and potentially falls, without reliance on later recall.