Browsing by Author "Leeds, Timothy D."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Aquaculture Reuse Water, Genetic Line, and Vaccination Affect Rainbow Trout (Oncorhynchus mykiss) Disease Susceptibility and Infection DynamicsEverson, Jeremy L.; Jones, Darbi R.; Taylor, Amy K.; Rutan, Barb J.; Leeds, Timothy D.; Langwig, Kate E.; Wargo, Andrew R.; Wiens, Gregory D. (2021-09-22)Infectious hematopoietic necrosis virus (IHNV) and Flavobacterium psychrophilum are major pathogens of farmed rainbow trout. Improved control strategies are desired but the influence of on-farm environmental factors that lead to disease outbreaks remain poorly understood. Water reuse is an important environmental factor affecting disease. Prior studies have established a replicated outdoor-tank system capable of varying the exposure to reuse water by controlling water flow from commercial trout production raceways. The goal of this research was to evaluate the effect of constant or pulsed reuse water exposure on survival, pathogen prevalence, and pathogen load. Herein, we compared two commercial lines of rainbow trout, Clear Springs Food (CSF) and Troutex (Tx) that were either vaccinated against IHNV with a DNA vaccine or sham vaccinated. Over a 27-day experimental period in constant reuse water, all fish from both lines and treatments, died while mortality in control fish in spring water was <1%. Water reuse exposure, genetic line, vaccination, and the interaction between genetic line and water exposure affected survival (P<0.05). Compared to all other water sources, fish exposed to constant reuse water had 46- to 710-fold greater risk of death (P<0.0001). Tx fish had a 2.7-fold greater risk of death compared to CSF fish in constant reuse water (P <= 0.001), while risk of death did not differ in spring water (P=0.98). Sham-vaccinated fish had 2.1-fold greater risk of death compared to vaccinated fish (P=0.02). Both IHNV prevalence and load were lower in vaccinated fish compared to sham-vaccinated fish, and unexpectedly, F. psychrophilum load associated with fin/gill tissues from live-sampled fish was lower in vaccinated fish compared to sham-vaccinated fish. As a result, up to forty-five percent of unvaccinated fish were naturally co-infected with F. psychrophilum and IHNV and the coinfected fish exhibited the highest IHNV loads. Under laboratory challenge conditions, co-infection with F. psychrophilum and IHNV overwhelmed IHNV vaccine-induced protection. In summary, we demonstrate that exposure to reuse water or multi-pathogen challenge can initiate complex disease dynamics that can overwhelm both vaccination and host genetic resistance.
- Effects of rearing triplet lambs on ewe productivity, lamb survival and performance, and future ewe performanceNotter, David R.; Mousel, Michelle R.; Leeds, Timothy D.; Lewis, Gregory S.; Taylor, J. Bret (2018-12)Increasing prolificacy has been proposed to be the most effective way to increase the biological efficiency and profitability of sheep production. However, use of prolific breeds and genes with major effects on ovulation rate can increase prolificacy to levels that may not be desirable or sustainable in extensive rangeland production systems. This study thus evaluated effects of triplet births on ewe productivity and ewe and lamb performance. An initial study used 666 purebred Polypay litters to compare ewes with triplet litters that were required to raise all the lambs (Treatment A) with those whose triplet litters were reduced to 2 lambs (Treatment R). Adult Polypay ewes had an average litter size of 2.35 lambs per litter. The frequency of litters of 3 or more lambs was 43.2%; 56.0% of lambs were born in litters of 3 or more lambs. Ewes that had singles weaned fewer lambs and less body weight (BW) of lambs (P < 0.001; 0.94 lambs and 40.4 kg, respectively) than ewes that had twins or triplets. Ewes with triplet litters in Treatment A weaned more lambs (P < 0.01) and more BW of lambs (P < 0.05) than ewes that had triplets in Treatment R (2.13 lambs and 62.9 kg, respectively, vs. 1.79 lambs and 55.0 kg, respectively), and weaned more lambs than ewes that had twins (1.77 lambs; P < 0.01). However, neither group of triplet-bearing ewes weaned more BW of lambs than ewes that had twins (58.9 kg; P >= 0.34). In 2 sets of data involving 442 purebred Polypay litters and 987 litters from Polypay or Romanov-White Dorper x Rambouillet ewes mated to terminal sires, ewes were required to raise all triplet-born lambs. Death losses for triplets in these studies (39.6 and 31.6%, respectively) were higher than those in Treatment A of the initial study (26.2%), resulting in greater numbers of lambs weaned for triplet, compared to twin, litters (1.79 vs. 1.68, respectively; P = 0.02) but no greater weight of lambs weaned (54.3 vs. 55.4 kg, respectively; P = 0.17). Based on these 3 sets of data, ewes that were required to rear triplet lambs weaned 0.20 more lambs per litter than ewes that had twins but also had 0.75 additional dead lambs per litter, and thus a lamb mortality overhead of 3.75 additional dead lambs for each additional weaned lamb. We conclude that there is an intermediate optimum prolificacy level for extensive rangeland production systems. If optimum prolificacy is exceeded, removal and artificial rearing of surplus lambs are necessary to avoid increased lamb death losses.