Browsing by Author "Lehmann, Laura"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Drone Laser Scanning for Modeling Riverscape Topography and Vegetation: Comparison with Traditional Aerial LidarResop, Jonathan P.; Lehmann, Laura; Hession, W. Cully (MDPI, 2019-04-12)Lidar remote sensing has been used to survey stream channel and floodplain topography for decades. However, traditional platforms, such as aerial laser scanning (ALS) from an airplane, have limitations including flight altitude and scan angle that prevent the scanner from collecting a complete survey of the riverscape. Drone laser scanning (DLS) or unmanned aerial vehicle (UAV)-based lidar offer ways to scan riverscapes with many potential advantages over ALS. We compared point clouds and lidar data products generated with both DLS and ALS for a small gravel-bed stream, Stroubles Creek, located in Blacksburg, VA. Lidar data points were classified as ground and vegetation, and then rasterized to produce digital terrain models (DTMs) representing the topography and canopy height models (CHMs) representing the vegetation. The results highlighted that the lower-altitude, higher-resolution DLS data were more capable than ALS of providing details of the channel profile as well as detecting small vegetation on the floodplain. The greater detail gained with DLS will provide fluvial researchers with better estimates of the physical properties of riverscape topography and vegetation.
- Quantifying the Spatial Variability of Annual and Seasonal Changes in Riverscape Vegetation Using Drone Laser ScanningResop, Jonathan P.; Lehmann, Laura; Hession, W. Cully (MDPI, 2021-09-07)Riverscapes are complex ecosystems consisting of dynamic processes influenced by spatially heterogeneous physical features. A critical component of riverscapes is vegetation in the stream channel and floodplain, which influences flooding and provides habitat. Riverscape vegetation can be highly variable in size and structure, including wetland plants, grasses, shrubs, and trees. This vegetation variability is difficult to precisely measure over large extents with traditional surveying tools. Drone laser scanning (DLS), or UAV-based lidar, has shown potential for measuring topography and vegetation over large extents at a high resolution but has yet to be used to quantify both the temporal and spatial variability of riverscape vegetation. Scans were performed on a reach of Stroubles Creek in Blacksburg, VA, USA six times between 2017 and 2019. Change was calculated both annually and seasonally over the two-year period. Metrics were derived from the lidar scans to represent different aspects of riverscape vegetation: height, roughness, and density. Vegetation was classified as scrub or tree based on the height above ground and 604 trees were manually identified in the riverscape, which grew on average by 0.74 m annually. Trees had greater annual growth and scrub had greater seasonal variability. Height and roughness were better measures of annual growth and density was a better measure of seasonal variability. The results demonstrate the advantage of repeat surveys with high-resolution DLS for detecting seasonal variability in the riverscape environment, including the growth and decay of floodplain vegetation, which is critical information for various hydraulic and ecological applications.