Browsing by Author "Li, Huai"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- caBIG VISDA: modeling, visualization, and discovery for cluster analysis of genomic dataZhu, Yitan; Li, Huai; Miller, David J.; Wang, Zuyi; Xuan, Jianhua; Clarke, Robert; Hoffman, Eric P.; Wang, Yue (2008-09-18)Background The main limitations of most existing clustering methods used in genomic data analysis include heuristic or random algorithm initialization, the potential of finding poor local optima, the lack of cluster number detection, an inability to incorporate prior/expert knowledge, black-box and non-adaptive designs, in addition to the curse of dimensionality and the discernment of uninformative, uninteresting cluster structure associated with confounding variables. Results In an effort to partially address these limitations, we develop the VIsual Statistical Data Analyzer (VISDA) for cluster modeling, visualization, and discovery in genomic data. VISDA performs progressive, coarse-to-fine (divisive) hierarchical clustering and visualization, supported by hierarchical mixture modeling, supervised/unsupervised informative gene selection, supervised/unsupervised data visualization, and user/prior knowledge guidance, to discover hidden clusters within complex, high-dimensional genomic data. The hierarchical visualization and clustering scheme of VISDA uses multiple local visualization subspaces (one at each node of the hierarchy) and consequent subspace data modeling to reveal both global and local cluster structures in a "divide and conquer" scenario. Multiple projection methods, each sensitive to a distinct type of clustering tendency, are used for data visualization, which increases the likelihood that cluster structures of interest are revealed. Initialization of the full dimensional model is based on first learning models with user/prior knowledge guidance on data projected into the low-dimensional visualization spaces. Model order selection for the high dimensional data is accomplished by Bayesian theoretic criteria and user justification applied via the hierarchy of low-dimensional visualization subspaces. Based on its complementary building blocks and flexible functionality, VISDA is generally applicable for gene clustering, sample clustering, and phenotype clustering (wherein phenotype labels for samples are known), albeit with minor algorithm modifications customized to each of these tasks. Conclusion VISDA achieved robust and superior clustering accuracy, compared with several benchmark clustering schemes. The model order selection scheme in VISDA was shown to be effective for high dimensional genomic data clustering. On muscular dystrophy data and muscle regeneration data, VISDA identified biologically relevant co-expressed gene clusters. VISDA also captured the pathological relationships among different phenotypes revealed at the molecular level, through phenotype clustering on muscular dystrophy data and multi-category cancer data.
- Knowledge-guided gene ranking by coordinative component analysisWang, Chen; Xuan, Jianhua; Li, Huai; Wang, Yue; Zhan, Ming; Hoffman, Eric P.; Clarke, Robert (2010-03-30)Background In cancer, gene networks and pathways often exhibit dynamic behavior, particularly during the process of carcinogenesis. Thus, it is important to prioritize those genes that are strongly associated with the functionality of a network. Traditional statistical methods are often inept to identify biologically relevant member genes, motivating researchers to incorporate biological knowledge into gene ranking methods. However, current integration strategies are often heuristic and fail to incorporate fully the true interplay between biological knowledge and gene expression data. Results To improve knowledge-guided gene ranking, we propose a novel method called coordinative component analysis (COCA) in this paper. COCA explicitly captures those genes within a specific biological context that are likely to be expressed in a coordinative manner. Formulated as an optimization problem to maximize the coordinative effort, COCA is designed to first extract the coordinative components based on a partial guidance from knowledge genes and then rank the genes according to their participation strengths. An embedded bootstrapping procedure is implemented to improve statistical robustness of the solutions. COCA was initially tested on simulation data and then on published gene expression microarray data to demonstrate its improved performance as compared to traditional statistical methods. Finally, the COCA approach has been applied to stem cell data to identify biologically relevant genes in signaling pathways. As a result, the COCA approach uncovers novel pathway members that may shed light into the pathway deregulation in cancers. Conclusion We have developed a new integrative strategy to combine biological knowledge and microarray data for gene ranking. The method utilizes knowledge genes for a guidance to first extract coordinative components, and then rank the genes according to their contribution related to a network or pathway. The experimental results show that such a knowledge-guided strategy can provide context-specific gene ranking with an improved performance in pathway member identification.
- Motif-guided sparse decomposition of gene expression data for regulatory module identificationGong, Ting; Xuan, Jianhua; Chen, Li; Riggins, Rebecca B.; Li, Huai; Hoffman, Eric P.; Clarke, Robert; Wang, Yue (2011-03-22)Background Genes work coordinately as gene modules or gene networks. Various computational approaches have been proposed to find gene modules based on gene expression data; for example, gene clustering is a popular method for grouping genes with similar gene expression patterns. However, traditional gene clustering often yields unsatisfactory results for regulatory module identification because the resulting gene clusters are co-expressed but not necessarily co-regulated. Results We propose a novel approach, motif-guided sparse decomposition (mSD), to identify gene regulatory modules by integrating gene expression data and DNA sequence motif information. The mSD approach is implemented as a two-step algorithm comprising estimates of (1) transcription factor activity and (2) the strength of the predicted gene regulation event(s). Specifically, a motif-guided clustering method is first developed to estimate the transcription factor activity of a gene modu≤ sparse component analysis is then applied to estimate the regulation strength, and so predict the target genes of the transcription factors. The mSD approach was first tested for its improved performance in finding regulatory modules using simulated and real yeast data, revealing functionally distinct gene modules enriched with biologically validated transcription factors. We then demonstrated the efficacy of the mSD approach on breast cancer cell line data and uncovered several important gene regulatory modules related to endocrine therapy of breast cancer. Conclusion We have developed a new integrated strategy, namely motif-guided sparse decomposition (mSD) of gene expression data, for regulatory module identification. The mSD method features a novel motif-guided clustering method for transcription factor activity estimation by finding a balance between co-regulation and co-expression. The mSD method further utilizes a sparse decomposition method for regulation strength estimation. The experimental results show that such a motif-guided strategy can provide context-specific regulatory modules in both yeast and breast cancer studies.