Browsing by Author "Li, Zihao"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Experimental and Statistical Investigation of Reservoir Properties with the Effect of Waterflooding TreatmentLi, Zihao; Du, Chenguang; Tang, Yongqiang; Li, Xiangming (2020-08-25)An oilfield reservoir over long-term operation may have different petrophysical information, which has a significant impact on oilfield maintenance and finance. Successful oilfield enhanced oil recovery benefits a lot from identifying and analyzing the variations of the critical properties after long-term water-flooding treatments. Since the inspection wells drilled within different development periods contain the core samples that have the petrophysical information at that period, it is necessary to collect and test the samples from different periods to investigate the overall tendency of the petrophysical properties. The samples from four inspection wells, which were drilled in four stages since the very beginning of development, were subjected to in-laboratory core analysis methods to illustrate the variation of some critical parameters in the reservoir. The permeability and porosity variation are revealed clearly by the experimental results. The migration and dissolution of clay minerals play a crucial role in the variation of petrophysical information and pore structure. To quantify the variations above, we applied the multiple linear regression model into our investigation. The dependent variable and all of the predictors in the model come from the experimental results. The quantitative results show the closed correlation between different parameters in the formation. With the development stage moving forward, the weight coefficients for different predictors have multiple trends. The experimental and statistical approach provides a novel understanding of the reservoir properties with the effect of waterflooding treatment.
- Experimental, Theoretical, and Numerical Investigations of Geomechanics/Flow Coupling in Energy GeoreservoirsLi, Zihao (Virginia Tech, 2021-09-01)The development of hydrocarbon energy resources from shale, a fine-grained, low-permeability geological formation, has altered the global energy landscape. Constricting pressure exerted on a shale formation has a significant effect on the rock's apparent permeability. Gas flow in low-permeability shales is significantly different from liquid flow due to the Klinkenberg effect caused by gas molecule slip at the nanopore wall surfaces. This has the effect of increasing apparent permeability (i.e., the measured permeability). Optimizing the conductivity of the proppant assembly is another critical component of designing subsurface hydrocarbon production using hydraulic fracturing. Significant fracture conductivity can be achieved at a much lower cost than conventional material costs, according to the optimal partial-monolayer proppant concentration (OPPC) theory. However, hydraulic fracturing performance in unconventional reservoirs is problematic due of the complex geomechanical environment, and the experimental confirmation and investigation of the OPPC theory have been rare in previous studies. In this dissertation, a novel multiphysics shale transport (MPST) model was developed to account for the coupled multiphysics processes of geomechanics, fluid dynamics, and the Klinkenberg effect in shales. Furthermore, A novel multi-physics multi-scale multi-porosity shale gas transport (M3ST) model was developed based on the MPST model research to investigate shale gas transport in both transient and steady states, and a double-exponential empirical model was also developed as a powerful substitute for the M3ST model for fitting laboratory-measured apparent permeability. Additionally, throughout the laboratory experiment of fracture conductivity with proppant, the four visible stages documented the evolution of non-monotonic conductivity and proppant concentration. The laboratory methods and empirical model were then applied to the shale plugs from Central Appalachia to investigate the formation properties there. The benefits of developing these regions wisely include a smaller surface footprint, reduced infrastructure requirements, and lower development costs. The developed MPST, M3ST, double-exponential empirical models and research findings shed light on the role of multiphysics mechanisms, such as geomechanics, fluid dynamics and transport, and the Klinkenberg effect, in shale gas transport across multiple spatial scales in both steady and transient states. The fracture conductivity experiments successfully validate the theory of OPPC and illustrate that proppant embedment is the primary mechanism that causes the competing process between fracture width and fracture permeability and consequently the non-monotonic fracture conductivity evolution as a function of increasing proppant concentration. The laboratory experimental facts and the numerical fittings in this study provided critical insights into the reservoir characterization in Central Appalachia and will benefit the reservoir development using non-aqueous fracturing techniques such as CO2 and advanced proppant technologies in the future.
- Using data analytics and laboratory experiments to advance the understanding of reservoir rock propertiesLi, Zihao (Virginia Tech, 2019-02-01)Conventional and unconventional reservoirs are both critical in oilfield developments. After waterflooding treatments over decades, the petrophysical properties of a conventional reservoir may change in many aspects. It is crucial to identify the variations of these petrophysical properties after the long-term waterflooding treatments, both at the pore and core scales. For unconventional reservoirs, the productivity and performance of hydraulic fracturing in shales are challenging because of the complicated petrophysical properties. The confining pressure imposed on a shale formation has a tremendous impact on the permeability of the rock. The correlation between confining pressure and rock permeability is complicated and might be nonlinear. In this thesis, a series of laboratory tests was conducted on core samples extracted from four U.S. shale formations to measure their petrophysical properties. In addition, a special 2D microfluidic equipment that simulates the pore structure of a sandstone formation was developed to investigate the influence of injection flow rate on the development of high-permeability flow channels. Moreover, the multiple linear regression (MLR) model was applied with the predictors based on the development stages to quantify the variations of reservoir petrophysical properties. The MLR model outcome indicated that certain variables were effectively correlated to the permeability. The 2D microfluidic model demonstrated the development of viscous fingering when the injection water flow rate was higher than a certain level, which resulted in reduced overall sweep efficiency. These comprehensive laboratory experiments demonstrate the role of confining pressure, Klinkenberg effect, and bedding plane direction on the gas flow in the nanoscale pore space in shales.