Browsing by Author "Librescu, Liviu"
Now showing 1 - 20 of 72
Results Per Page
Sort Options
- Active vibration control of composite structuresChang, Min-Yung (Virginia Tech, 1990-07-07)The vibration control of composite beams and plates subjected to a travelling load is studied in this dissertation. By comparing the controlled as well as uncontrolled responses of classical and refined structural models, the influence of several important composite structure properties which are not included in the classical structural model is revealed. The modal control approach is employed to suppress the structural vibration. In modal control, the control is effected by controlling the modes of the system. The control law is obtained by using the optimal control theory. Comparison of two variants of the modal control approach, the coupled modal control (CMC) and independent modal-space control (IMSC), is made. The results are found to be in agreement with those obtained by previous investigators. The differences between the controlled responses as well as actuator outputs that are predicted by the classical and the refined structural models are outlined in this work. In conclusion, it is found that, when performing the structural analysis and control system design for a composite structure, the classical structural models (such as the Euler-Bernoulli beam and Kirchhoff plate) yield erroneous conclusions concerning the performance of the actual structural system. Furthermore, transverse shear deformation, anisotropy, damping, and the parameters associated with the travelling load are shown to have great influence on the controlled as well as uncontrolled responses of the composite structure.
- Aeroelastic modeling and flutter control in aircraft with low aspect ratio composite wingsMorris, Russell A. (Virginia Tech, 1996)A comprehensive study including modeling and control of aeroelastic instabilities in free flying aircraft with flexible wings has been completed. The structural model of the wing consists of a trapezoidal composite plate rigidly attached to a fuselage with rigid-body degrees of freedom. Both quasi-steady and quasi-static aerodynamic strip theories were used to analyze several different flutter mechanisms for a variety of low aspect ratio wing configurations. The most critical flutter mechanism was found to be body-freedom flutter, a coupling of aircraft pitching and wing bending motions, for wings in a forward-sweep configuration. In addition, a modal approximation to the flutter eigenvalue problem was used to substantially reduce computation cost, making the resulting model very attractive for use in larger multiobjective design packages. Composite ply angle tailoring was investigated as a passive method of increasing the body-freedom flutter airspeed of an aircraft model. In addition, wing mounted piezoelectric sensor and induced-strain actuator patches were used in conjunction with active feedback control laws to increase the airspeed at which body-freedom flutter occurs. Two control laws were tested, coupled and independent modal position feedback, to delay frequency coalescence and thus increase the flutter airspeed.
- Aeroelasticity of Morphing Wings Using Neural NetworksNatarajan, Anand (Virginia Tech, 2002-07-03)In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. A time marching technique is developed for solving linear structural dynamic problems with time-varying parameters. This time-marching technique borrows from the concept of Time-Finite Elements in the sense that for each time interval considered in the time-marching, an analytical solution is obtained. The analytical solution for each time interval is in the form of a matrix exponential and hence this technique is termed as Matrix Exponential time marching. Using this time marching technique, Artificial Neural Networks can be trained to represent the dynamic behavior of any linearly time varying system. In order to extend this methodology to dynamic aeroelasticity, it is also necessary to model the unsteady aerodynamic loads over an airfoil. Accordingly, an unsteady aerodynamic panel method is developed using a distributed set of doublet panels over the surface of the airfoil and along its wake. When the aerodynamic loads predicted by this panel method are made available to the Matrix Exponential time marching scheme for every time interval, a dynamic aeroelastic solver for a time varying aeroelastic system is obtained. This solver is now used to train an array of neural networks to represent the response of this two dimensional aeroelastic system with a time varying torsional stiffness. These neural networks are developed into a control system for flutter suppression. Another type of aeroelastic problem of an adaptive structure that is investigated here is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to represent the aerodynamic loading over the bump. A second neural network is trained for calculating the actuator loads, bump displacement and lift, drag forces over the airfoil using the finite element solver, ANSYS and the previously trained neural network. This non-linear aeroelastic model of the deforming bump on an airfoil surface using neural networks can serve as a fore-runner for other non-linear aeroelastic problems. This work enhances the traditional aeroelastic modeling by introducing time varying parameters in the differential equations of motion. It investigates the calculation of non-conservative aerodynamic loads on morphing contours and the resulting structural deformation for non-linear aeroelastic problems through the use of neural networks. Geometric modeling of morphing contours is also addressed.
- Analysis and Design of Variable Stiffness Composite CylindersTatting, Brian F. (Virginia Tech, 1998-10-13)An investigation of the possible performance improvements of thin circular cylindrical shells through the use of the variable stiffness concept is presented. The variable stiffness concept implies that the stiffness parameters change spatially throughout the structure. This situation is achieved mainly through the use of curvilinear fibers within a fiber-reinforced composite laminate, though the possibility of thickness variations and discrete stiffening elements is also allowed. These three mechanisms are incorporated into the constitutive laws for thin shells through the use of Classical Lamination Theory. The existence of stiffness variation within the structure warrants a formulation of the static equilibrium equations from the most basic principles. The governing equations include sufficient detail to correctly model several types of nonlinearity, including the formation of a nonlinear shell boundary layer as well as the Brazier effect due to nonlinear bending of long cylinders. Stress analysis and initial buckling estimates are formulated for a general variable stiffness cylinder. Results and comparisons for several simplifications of these highly complex governing equations are presented so that the ensuing numerical solutions are considered reliable and efficient enough for in-depth optimization studies. Four distinct cases of loading and stiffness variation are chosen to investigate possible areas of improvement that the variable stiffness concept may offer over traditional constant stiffness and/or stiffened structures. The initial investigation deals with the simplest solution for cylindrical shells in which all quantities are constant around the circumference of the cylinder. This axisymmetric case includes a stiffness variation exclusively in the axial direction, and the only pertinent loading scenarios include constant loads of axial compression, pressure, and torsion. The results for these cases indicate that little improvement over traditional laminates exists through the use of curvilinear fibers, mainly due to the presence of a weak link area within the stiffness variation that limits the ultimate load that the structure can withstand. Rigorous optimization studies reveal that even though slight increases in the critical loads can be produced for designs with an arbitrary variation of the fiber orientation angle, the improvements are not significant when compared to traditional design techniques that utilize ring stiffeners and frames. The second problem that is studied involves arbitrary loading of a cylinder with a stiffness variation that changes only in the circumferential direction. The end effects of the cylinder are ignored, so that the problem takes the form of an analysis of a cross-section for a short cylinder segment. Various load cases including axial compression, pressure, torsion, bending, and transverse shear forces are investigated. It is found that the most significant improvements in load-carrying capability exist for cases which involve loads that also vary around the circumference of the shell, namely bending and shear forces. The stiffness variation of the optimal designs contribute to the increased performance in two ways: lowering the stresses in the critical areas through redistribution of the stresses; and providing a relatively stiff region that alters the buckling behavior of the structure. These results led to an in-depth optimization study involving weight optimization of a fuselage structure subjected to typical design constraints. Comparisons of the curvilinear fiber format to traditional stiffened structures constructed of isotropic and composite materials are included. It is found that standard variable stiffness designs are quite comparable in terms of weight and load-carrying capability yet offer the added advantage of tailorability of distinct regions of the structure that experience drastically different loading conditions. The last two problems presented in this work involve the nonlinear phenomenon of long tubes under bending. Though this scenario is not as applicable to fuselage structures as the previous problems, the mechanisms that produce the nonlinear effect are ideally suited to be controlled by the variable stiffness concept. This is due to the fact that the dominating influence for long cylinders under bending is the ovalization of the cross-section, which is governed mainly by the stiffness parameters of the cylindrical shell. Possible improvement of the critical buckling moments for these structures is investigated using either a circumferential or axial stiffness variation. For the circumferential case involving infinite length cylinders, it is found that slight improvements can be observed by designing structures that resist the cross-sectional deformation yet do not detract from the buckling resistance at the critical location. The results also indicate that bucking behavior is extremely dependent on cylinder length. This effect is most easily seen in the solution of finite length cylinders under bending that contain an axial stiffness variation. For these structures, the only mechanism that exhibits improved response are those that effectively shorten the length of the cylinder, thus reducing the cross-sectional deformation due to the forced restraint at the ends. It was found that the use of curvilinear fibers was not able to achieve this effect in sufficient degree to resist the deformation, but that ring stiffeners produced the desired response abmirably. Thus it is shown that the variable stiffness concept is most effective at improving the bending response of long cylinders through the use of a circumferential stiffness variation.
- Analysis by Meshless Local Petrov-Galerkin Method of Material Discontinuities, Pull-in Instability in MEMS, Vibrations of Cracked Beams, and Finite Deformations of Rubberlike MaterialsPorfiri, Maurizio (Virginia Tech, 2006-04-27)The Meshless Local Petrov-Galerkin (MLPG) method has been employed to analyze the following linear and nonlinear solid mechanics problems: free and forced vibrations of a segmented bar and a cracked beam, pull-in instability of an electrostatically actuated microbeam, and plane strain deformations of incompressible hyperelastic materials. The Moving Least Squares (MLS) approximation is used to generate basis functions for the trial solution, and for the test functions. Local symmetric weak formulations are derived, and the displacement boundary conditions are enforced by the method of Lagrange multipliers. Three different techniques are employed to enforce continuity conditions at the material interfaces: Lagrange multipliers, jump functions, and MLS basis functions with discontinuous derivatives. For the electromechanical problem, the pull-in voltage and the corresponding deflection are extracted by combining the MLPG method with the displacement iteration pull-in extraction algorithm. The analysis of large deformations of incompressible hyperelastic materials is performed by using a mixed pressure-displacement formulation. For every problem studied, computed results are found to compare well with those obtained either analytically or by the Finite Element Method (FEM). For the same accuracy, the MLPG method requires fewer nodes but more CPU time than the FEM.
- Analytical Solutions for the Deformation of Anisotropic Elastic and Piezothermoelastic Laminated PlatesVel, Senthil S. (Virginia Tech, 1998-11-30)The Eshelby-Stroh formalism is used to analyze the generalized plane strain quasistatic deformations of an anisotropic, linear elastic laminated plate.The formulation admits any set of boundary conditions on the edges and long faces of the laminate. Each lamina may be generally anisotropic with as many as 21 independent elastic constants. The three dimensional governing differential equations are satisfied at every point of the body.The boundary conditions and interface continuity conditions are satisfied in the sense of a Fourier series. Results are presented for three sample problems to illustrate the versatility of the method. The solution methodology is generalized to study the deformation of finite rectangular plates subjected to arbitrary boundary conditions. The effect of truncation of the series on the accuracy of the solution is carefully examined. Results are presented for thick plates with two opposite edges simply supported and the other two subjected to eight different boundary conditions. The results are compared with three different plate theories.The solution exhibits boundary layers at the edges except when they are simply supported. Results are presented in tabular form for different sets of edge boundary conditions to facilitate comparisons with predictions from various plate theories and finite element formulations. The Eshelby-Stroh formalism is also extended to study the generalized plane deformations of piezothermoelastic laminated plates. The method is capable of analyzing laminated plates with embedded piezothermoelastic patches. Results are presented for a thermoelastic problem and laminated elastic plates with piezothermoelastic lamina attached to its top surface. When a PZT actuator patch is attached to an elastic cantilever substrate, it is observed that the transverse shear stress and transverse normal stress are very large at the corners of the PZT-substrate interface. This dissertation is organized in the form of three self-contained chapters each of which will be submitted for possible publication in a journal.
- Analytical solutions for the statics and dynamics of rectangular laminated composite plates using shearing deformation theoriesKhdeir, Ahmed Adel (Virginia Polytechnic Institute and State University, 1986)The Levy-type analytical solutions in conjunction with the state-space concept are developed for symmetric laminated composite rectangular plates. Combinations of simply-supported, free and clamped boundary conditions are considered. The solutions are obtained for the first-order and higher-order theories in predicting the transverse deflections and stresses. Numerical results are presented for various boundary conditions, aspect ratios, lamination schemes and different loadings. The developments of these theories accomplished in general coordinates allow one to fulfill both the invariance requirements and to derive the relevant equations in any convenient planar systems of coordinates. The dynamic response problems are analyzed in the framework of higher order theories where the effects of transverse normal stress and rotary inertia forces are evaluated. The comparison between the theories as well as previously reported results is reported.
- Bending vibration of cantilevered thin-walled beams subjected to time-dependent external excitationsSong, Ohseop S.; Librescu, Liviu (Acoustical Society of America, 1995-07-01)The bending vibration of cantilevered thin-walled beams of arbitrary closed cross section exposed to time-dependent external excitations is investigated. The beam model used in this study incorporates a number of nonclassical effects, namely, transverse shear, secondary warping, anisotropy of constituent materials, and heterogeneity of the construction. An exact methodology based on the Laplace transform technique aiming at determining the frequency-response characteristics is used, and numerical illustrations emphasizing the effects of a number of geometrical and mechanical parameters on the frequency response behavior are displayed. 1995 Acoustical Society of America
- Buckling and postbuckling of flat and curved laminated composite panels under thermomechanical loadings incorporating non-classical effectsLin, Weiqing (Virginia Tech, 1997-04-05)Two structural models which can be used to predict the buckling, post buckling and vibration behavior of flat and curved composite panels under thermomechanical loadings are developed in this work. Both models are based on higher-order transverse shear deformation theories of shallow shells that include the effects of geometric nonlinearities and initial geometric imperfections. Within the first model (Model I), the kinematic continuity at the contact surfaces between the contiguous layers and the free shear traction condition on the outer bounding surfaces are satisfied, whereas in the second model (Model II), in addition to these conditions, the static interlaminae continuity requirement is also fulfilled. Based on the two models, results which cover a variety of problems concerning the postbuckling behaviors of flat and curved composite panels are obtained and displayed. These problems include: i) buckling and postbuckling behavior of flat and curved laminated structures subjected to mechanical and thermal loadings; ii)frequency-load/temperature interaction in laminated structures in both pre-buckling and post buckling range; iii) the influence of a linear/nonlinear elastic foundation on static and dynamic post buckling behavior of flat/curved laminated structures exposed to mechanical and temperature fields; iv) implication of edge constraints upon the temperature/load carrying capacity and frequencyload/ temperature interaction of flat/curved structures; v) elaboration of a number of methodologies enabling one to attenuate the intensity of the snap-through buckling and even to suppress it as well as of appropriate ways enabling one to enhance the load/temperature carrying capacity of structures.
- Buckling, Flutter, and Postbuckling Optimization of Composite StructuresSeresta, Omprakash (Virginia Tech, 2007-02-27)This research work deals with the design and optimization of a large composite structure. In design of large structural systems, it is customary to divide the problem into many smaller independent/semi-independent local design problems. For example, the wing structure design problem is decomposed into several local panel design problem. The use of composite necessitates the inclusion of ply angles as design variables. These design variables are discrete in nature because of manufacturing constraint. The multilevel approach results into a nonblended solution with no continuity of laminate layups across the panels. The nonblended solution is not desirable because of two reasons. First, the structural integrity of the whole system is questionable. Second, even if there is continuity to some extent, the manufacturing process ends up being costlier. In this work, we develop a global local design methodology to design blended composite laminates across the whole structural system. The blending constraint is imposed via a guide based approach within the genetic algorithm optimization scheme. Two different blending schemes are investigated, outer and inner blending. The global local approach is implemented for a complex composite wing structure design problem, which is known to have a strong global local coupling. To reduce the computational cost, the originally proposed local one dimensional search is replaced by an intuitive local improvement operator. The local panels design problem arises in global/local wing structure design has a straight edge boundary condition. A postbuckling analysis module is developed for such panels with applied edge displacements. A parametric study of the effects of flexural and inplane stiffnesses on the design of composite laminates for optimal postbuckling performance is done. The design optimization of composite laminates for postbuckling strength is properly formulated with stacking sequence as design variables. Next, we formulate the stacking sequence design (fiber orientation angle of the layers) of laminated composite flat panels for maximum supersonic flutter speed and maximum thermal buckling capacity. The design is constrained so that the behavior of the panel in the vicinity of the flutter boundary should be limited to stable limit cycle oscillation. A parametric study is carried out to investigate the tradeoff between designs for thermal buckling and flutter. In an effort to include the postbuckling constraint into the multilevel design optimization of large composite structure, an alternative cheap methodology for predicting load paths in postbuckled structure is presented. This approach being computationally less expensive compared to full scale nonlinear analysis can be used in conjunction with an optimizer for preliminary design of large composite structure with postbuckling constraint. This approach assumes that the postbuckled stiffness of the structure, though reduced considerably, remains linear. The analytical expressions for postbuckled stiffness are given in a form that can be used with any commercially available linear finite element solver. Using the developed approximate load path prediction scheme, a global local design approach is developed to design large composite structure with blending and local postbuckling constraints. The methodology is demonstrated via a composite wing box design with blended laminates.
- A CFD/CSD Interaction Methodology for Aircraft WingsBhardwaj, Manoj K. (Virginia Tech, 1997-09-15)With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can contribute significantly to the design of these aircraft, there is a strong need in the aerospace industry to predict these aero-structure interactions computationally. To perform static aeroelastic analysis in the transonic regime, high fidelity computational fluid dynamics (CFD) analysis tools must be used in conjunction with high fidelity computational structural dynamics (CSD)analysis tools due to the nonlinear behavior of the aerodynamics in the transonic regime. There is also a need to be able to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the transonic regime. Because source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed which will perform static aeroelastic analysis using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code)and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code (developed as a part of this research). The results obtained from the present study are compared with those available from an experimental study conducted at NASA Langley Research Center and a study conducted at NASA Ames Research Center using ENSAERO and modal superposition. The results compare well with experimental data. In addition, parallel computing power is used to investigate parallel static aeroelastic analysis because obtaining an aeroelastic solution using CFD/CSD methods is computationally intensive. A parallel finite element wing-box code is developed and coupled with an existing parallel Euler code to perform static aeroelastic analysis. A typical wing-body configuration is used to investigate the applicability of parallel computing to this analysis. Performance of the parallel aeroelastic analysis is shown to be poor; however with advances being made in the arena of parallel computing, there is definitely a need to continue research in this area.
- Computational Modeling and Impact Analysis of Textile Composite StructutresHur, Hae-Kyu (Virginia Tech, 2006-08-15)This study is devoted to the development of an integrated numerical modeling enabling one to investigate the static and the dynamic behaviors and failures of 2-D textile composite as well as 3-D orthogonal woven composite structures weakened by cracks and subjected to static-, impact- and ballistic-type loads. As more complicated modeling about textile composite structures is introduced, some of homogenization schemes, geometrical modeling and crack propagations become more difficult problems to solve. To overcome these problems, this study presents effective mesh-generation schemes, homogenization modeling based on a repeating unit cell and sinusoidal functions, and also a cohesive element to study micro-crack shapes. This proposed research has two: 1) studying behavior of textile composites under static loads, 2) studying dynamic responses of these textile composite structures subjected to the transient/ballistic loading. In the first part, efficient homogenization schemes are suggested to show the influence of textile architectures on mechanical characteristics considering the micro modeling of repeating unit cell. Furthermore, the structures of multi-layered or multi-phase composites combined with different laminar such as a sub-laminate, are considered to find the mechanical characteristics. A simple progressive failure mechanism for the textile composites is also presented. In the second part, this study focuses on three main phenomena to solve the dynamic problems: micro-crack shapes, textile architectures and textile effective moduli. To obtain a good solutions of the dynamic problems, this research attempts to use four approaches: I) determination of governing equations via a three-level hierarchy: micro-mechanical unit cell analysis, layer-wise analysis accounting for transverse strains and stresses, and structural analysis based on anisotropic plate layers, II) development of an efficient computational approach enabling one to perform transient response analyses of 2-D plain woven, 2-D braided and 3-D orthogonal woven composite structures featuring matrix cracking and exposed to time-dependent ballistic loads, III) determination of the structural characteristics of the textile-layered composites and their degraded features under smeared and discrete cracks, and assessment of the implications of stiffness degradation on dynamic response to impact loads, and finally, IV) the study of the micro-crack propagation in the textile/ceramic layered plates. A number of numerical models have been carried out to investigate the mechanical behavior of 2-D plain woven, 2-D braided and 3-D orthogonal woven textile composites with several geometrical representations, and also study the dynamic responses of multi-layered or textile layered composite structures subjected to ballistic impact penetrations with a developed in-house code.
- Contact of orthotropic laminates with a rigid spherical indentorChen, Chun-Fu (Virginia Tech, 1991-04-29)Three dimensional contact problems of square orthotropic laminates indented by a rigid spherical indenter are solved. Simplified problems of indentations of beam and isotropic square plate are studied first to develop an efficient numerical technique and to gather the knowledge of the shape of the contact area in order to solve for the three dimensional orthotropic cases. The approach combines an exact solution method in conjunction with a simple discretization numerical scheme. Numerical sensitivity due to the ill-posed nature of the problem was experienced but was cured by enhancing the numerical approach with a least square spirit. Well agreement is obtained by comparing the results of these simplified studies with available published solutions. For isotropic plate, contact area is found to be either a circle or a hypotrochoid of four lobes featured with a shorter length of contact along the through-the- corner directions of the plate. Hertz's theory fails earlier than assuming the contact area to be a circle. In-plane dependence of the contact stress is presented to illustrate the difference of contact behavior between a square plate and a circular plate. Load-indentation relation reveals indenting a square plate is harder than indenting a circular plate of a diameter equal to the side length of the square plate. Solutions of multi-layered orthotropic cases are achieved by employing a modified analytical approach with the same numerical method. Three different configurations of plate are implemented for the orthotropic case, namely, a single layered magnesium (Mg) plate, which is slightly orthotropic, and a single and double layered plates of graphite-epoxy (G-E), which are highly orthotropic. Results for the (Mg) plate agrees with the previous isotropic case. Concept of modifying the previous hypotrochoids is introduced to seek for the contact stresses for comparatively large indentation conditions. Single-layered (G-E) plate was implemented for small indentations. The result supports the validity of Hertz's theory for small indentation and shows a relatively longer contact length in the direction of less stiffness. Two layered (G-E) plate illustrates similar distributions for the contact stresses along both of the in-plane directions with a smaller range of validity of Hertzian type behavior than the previous cases. The boundary effect prevails at the initial stage of indentation but is overcome by the effect of material orthotropy as the indentation proceeds. Thus, the contact area for small indentation appears to be the same kind of hypotrochoids as located in the isotropic case but changes to be the other type of hypotrochoids as the indentation advances.
- Control of Dynamic Response of Thin-Walled Composite Beams Using Structural Tailoring and Piezoelectric ActuationNa, Sungsoo (Virginia Tech, 1997-09-28)A dual approach integrating structural tailoring and adaptive materials technology and designed to control the dynamic response of cantilever beams subjected to external excitations is addressed. The cantilevered structure is modeled as a thin-walled beam of arbitrary cross-section and incorporates a number of non-classical effects such as transverse shear, warping restraint, anisotropy of constituent materials and heterogeneity of the construction. Whereas structural tailoring uses the anisotropy properties of advanced composite materials, adaptive materials technology exploits the actuating/sensing capabilities of piezoelectric materials bonded or embedded into the host structure. Various control laws relating the piezoelectrically-induced bending moment with combined kinematical variables characterizing the response at given points of the structure are implemented and their effects on the closed-loop frequencies and dynamic response to external excitations are investigated. The combination of structural tailoring and control by means of adaptive materials proves very effective in damping out vibration. In addition, the influence of a number of non-classical effects characterizing the structural model on the open and closed-loop dynamic responses have been considered and their roles assessed.
- Deformations of Piezoceramic-Composite ActuatorsJilani, Adel Benhaj (Virginia Tech, 1999-11-11)In the past few years a new class of layered piezoceramic and piezoceramic-composite actuators, known as RAINBOW and GRAPHBOW, respectively, that are capable of achieving 100 times greater out-of-plane displacements than previously available has been developed. Prior to the development of RAINBOW and GRAPHBOW, large stacks of piezoelectric actuators, requiring complicated electronic drive circuits, were necessary to achieve the displacement now possible through the use of a single RAINBOW actuator. The major issues with both RAINBOW and GRAPHBOW are the prediction of their room-temperature shapes after processing, and their deformation response under application of electric field. In this research, a methodology for predicting the manufactured shapes of rectangular and disk-style RAINBOW and GRAPHBOW is developed. All of the predictive analyses developed are based on finding approximate displacement responses that minimize the total potential energy of the devices through the use of variational methods and the Rayleigh-Ritz technique. These analyses are based on classical layered plate theory and assumed the various layers exhibited linear elastic, temperature-independent behavior. Geometric nonlinearities are important and are included in the strain-displacement relations. Stability of the predicted shapes is determined by examining the second variation of the total potential energy. These models are easily modified to account for the deformations induced by actuation of the piezoceramic. The results indicate that for a given set of material properties, rectangular RAINBOW can have critical values of sidelength-to-thickness ratio (Lx/H or Ly/H) below which RAINBOW exhibits unique, or single-valued, spherical or domed shapes when cooled from the processing temperature to room temperature. For values of sidelength-to-thickness ratio greater than the critical value, RAINBOW exhibits multiple room-temperature shapes. Two of the shapes are stable and are, in general, near-cylindrical. The third shape is spherical and is unstable. Similarly, disk-style RAINBOW can have critical values of radius-to-thickness ratios (R/H) below which RAINBOW exhibits axisymmetric room-temperature shapes. For values of R/H greater than the critical value, disk-style RAINBOW exhibits two stable near-cylindrical shapes and one unstable axisymmetric shape. Moreover, it is found that for the set of material properties used in this study, the optimal reduced layer thickness would be at 55%, since the maximum change in curvature is achieved under the application of an electric field, while the relationship between the change in curvatures and the electric field is kept very close to being linear. In general, good agreement is found for comparisons between the predicted and manufactured shapes of RAINBOW. A multi-step thermoelastic analysis is developed to model the addition of the fiber-reinforced composite layer to RAINBOW to make GRAPHBOW. Results obtained for rectangular RAINBOW indicate that if the bifurcation temperature in the temperature-curvature relation is lower than the composite cure temperature, then a unique stable GRAPHBOW shape can be obtained. If the RAINBOW bifurcation temperature is above the composite cure temperature, multiple room-temperature GRAPHBOW shapes are obtained and saddle-node bifurcations can be encountered during the cooling to room temperature of [0°/RAINBOW], [RAINBOW/0o], and [0o2/RAINBOW]. Rectangular [RAINBOW/0o/90o] seems to be less likely to encounter saddle-node bifurcations. Furthermore, the unstable spherical RAINBOW configuration is converted to a stable near-cylindrical configuration. For the case considered of disk-style GRAPHBOW, three stable room-temperature shapes are obtained and the unstable axisymmetric RAINBOW configuration is also converted to a stable near-cylindrical configuration. For both rectangular and disk-style GRAPHBOW, the relationship between the major curvature and the electric field is shown to be very close to being linear. This characteristic would aid any dynamic analysis of RAINBOW or GRAPHBOW.
- Deformations of Unsymmetric Composite PanelsOchinero, Tomoya Thomas (Virginia Tech, 2001-10-24)This work discusses the deformations of various unsymmetric composite panels due to thermal and mechanical loads. Chapter 2 focuses on the warpage of large unsymmetric curved composite panels due manufacturing anomalies. These panels are subjected to a temperature change of -280°F to simulate the cooling from the autoclave cure temperature. Sixteen layer quasi-isotropic, axial-stiff, and circumferentially-stiff laminates are considered. These panels are intended to be symmetric laminates, but are slightly unsymmetric due to the manufacturing anomalies. Rayleigh-Ritz and finite-element models are developed to predict the deformations. Initially, to serve as a basis for comparison, warpage effects due to orthotropic thermal expansion properties in perfect panels are investigated and are found to produce deformations not captured in two-dimensional theories. This is followed by the investigation of the effects of ply misalignments. Ply misalignments of 5° are incorporated into the laminate, one layer at a time, to produce unsymmetric laminates. It is found that ply misalignments produce warpages much larger than those induced by orthotropic thermal expansion properties. Next, unsymmetric laminates resulting from ply thickness variations are investigated. Layers 10% thicker than nominal are incorporated into the laminate, one layer at a time, while the remaining layers are of uniform thickness. Due to the change in fiber volume fraction of the thicker layers, corresponding material properties are modified to reflect this change. The results show that ply thickness variations cause warpages of about 25-50% of those induced by ply misalignments. Finally, warpage of panels due to nonuniform cooling due to inplane thermal gradients during cure is investigated. A thermal gradient of 0.1°F/in. is used to construct six inplane distributions. It is found that the warpages induced by thermal gradients are very small. The warpages are negligible with respect to those induced by ply thickness variations or ply misalignments. Deformations induced by thermal gradients depend primarily on the magnitude of the thermal gradient, but not on the pattern of distribution. Overall, ply misalignments cause the most warpage, followed by ply thickness variations. Important variables for these imperfections are, the through-thickness location of the imperfections, the orientation of the layer containing the imperfections, and the lamination sequence. All cases show that geometric nonlinearities are important to accurately predict the deformations induced by these imperfections. Chapter 3 discusses the deformations of composite plates that are intentionally fabricated to be unsymmetric. Such plates, if flat, might be considered in applications where bending-stretching coupling effects can be used to advantage. It is assumed the laminates are cured at an elevated temperature and then cooled 280°F. Significant deformations result because of the high level of asymmetry in the laminate construction. Accordingly, geometric nonlinearities are included in the models. Four cross-ply laminates and three angle-ply laminates are considered. Four-term and 14-term Rayleigh-Ritz models are developed, together with finite-element models to model the deformations. Actual specimens were constructed and the deformations measured to compare with predictions. The results show that agreement between predictions and the experimental results are good. The 14-term Rayleigh-Ritz model is found to be the most useful due to its ability to find multiple solutions, its physical basis, and computational efficiency. Chapter 4 discusses the deformations of initially flat aluminum, symmetric, and unsymmetric composite plates due to axial endshortening under various boundary conditions, the aluminum and symmetric plates serving as a baseline. Seven plates are considered, each with three boundary condition combinations, namely, clamped ends and sides (CL-CL), clamped ends with simply-supported sides (CL-SS), and simply-supported ends and sides (SS-SS). Generally, the boundary conditions play a key role in the deformation characteristics of the plates. The aluminum and symmetric cross-ply plates have no out-of-plane deformations until classic buckling, or primary instability, then each exhibits two stable solutions. Each also exhibits secondary instability that results in two stable solutions. The symmetric laminates show less of a dependence on the boundary conditions compared to the unsymmetric laminates. Unsymmetric laminates show a mixture of characteristics. Some cases exhibit primary instability, other cases do not. Some cases exhibit secondary instability, while some case do not. The unsymmetric cross-ply laminates have only one stable solution after secondary buckling, while most other laminates and boundary condition combinations have two stable solutions. It is interesting to note that for the unbalanced unsymmetric [302/90/0]2T laminate, the boundary conditions controlled the sign of the out-of-plane deflection from the onset of axial endshortening. Generally speaking, the CL-CL cases carry the most load, followed by the CL-SS, and then the SS-SS cases. Like all the problems discussed in Chapter 2 and 3, geometric nonlinearities are found to be important for this case as well.
- Development of advanced modal methods for calculating transient thermal and structural responseCamarda, Charles J. (Virginia Tech, 1990-09-06)This dissertation evaluates higher-order modal methods for predicting thermal and structural response. More accurate methods or ones which can significantly reduce the size of complex, transient thermal and structural problems are desirable for analysis and are required for synthesis of real structures subjected to thermal and mechanical loading. A unified method is presented for deriving successively higher-order modal solutions related to previously developed, lower-order methods such as the mode-displacement and mode-acceleration methods. A new method, called the force derivative method, is used to obtain higher-order modal solutions for both uncoupled (proportionally-damped) structural problems as well as thermal problems and coupled (non-proportionally damped) structural problems. The new method is called the force-derivative method because, analogous to the mode-acceleration method, it produces a term that depends on the forcing function and additional terms that depend on the time derivatives of the forcing function. The accuracy and convergence history of various modal methods are compared for several example problems, both structural and thermal. The example problems include the case of proportional damping for: a cantilevered beam subjected to a quintic time varying tip load and a unit step tip load and a muItispan beam subjected to both uniform and discrete quintic time-varying loads. Examples of non-proportional damping include a simple two-degree-of-freedom spring-mass system with discrete viscous dampers subjected to a sinusoidally varying load and a multispan beam with discrete viscous dampers subjected to a uniform, quintic time varying load. The last example studied is a transient thermal problem of a rod subjected to a linearly-varying, tip heat load.
- Dynamic Behavior of Elastically Tailored Rotating Blades Modeled as Pretwisted Thin-Walled Beamsand Incorporating Adaptive CapabilitiesSong, Ohseop S.; Oh, Sang-Yong; Librescu, Liviu (Hindawi, 2002-01-01)
- Dynamic Response of Cantilevered Thin-Walled Beams to Blast and Sonic-Boom LoadingsLibrescu, Liviu; Na, Sungsoo (Hindawi, 1998-01-01)
- Dynamic Response of Linear/Nonlinear Laminated Structures Containing Piezoelectric LaminasLiang, Xiaoqing (Virginia Tech, 1997-03-17)The three-dimensional linear theory of piezo-elasticity is used to analyse steady state vibrations of a simply supported rectangular laminated composite plate with piezoelectric (PZT) actuator and sensor patches either embedded in it or bonded to the its surfaces. It is assumed that different layers are perfectly bonded to each other. The method of Fourier series is used to find an analytical solution of the problem. The analytical solution is then applied to study the shape control of a steadily vibrating composite plate by exciting different regions of a PZT actuator. Numerical results for a thin and a thick plate containing one embedded actuator layer and one embedded sensor layer are presented. For the former case, the optimum location of the centroid of the excited rectangular region that will require minimum voltage to control the out-of-plane displacements is determined. Keeping the location of the centroid and the shape of the excited region fixed, we ascertain the voltage required as a function of the length of its diagonal to nullify the deflections of the plate. The maximum shear stress at the interface between the sensor and the lamina is found to be lower than that between the actuator and the lamina. The point of maximum output voltage from the sensor coincides with that of its peak out-of-plane displacement. The variations of displacement and stress components through the thickness for the thin and thick plates are similar. The transient finite deformations of a neo-Hookean beam or plate with PZT patches bonded to its upper and lower surfaces are simulated by the finite element method. The constitutive relation for the piezoelectric material is taken to be linear in the Green-Lagrange strain tensor but quadratic in the driving voltage. A code using 8-noded brick elements has been developed and validated by comparing computed results with either analytical solutions or experimental observations. The code is then used to study flexural waves generated by PZT actuators and propagating through a cantilever beam both with and without a defect in it. The computed results are compared with test observations and with the published results for the linear elastic beam. The effects of both geometrical and material nonlinearities are discussed. A simple feedback control algorithm is shown to annul the motion of a neo-Hookean plate subjected to an impulsive load.