Browsing by Author "Lippi, Catherine A."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic modelsMordecai, Erin A.; Cohen, Jeremy M.; Evans, Michelle V.; Gudapati, Prithvi; Johnson, Leah R.; Lippi, Catherine A.; Miazgowicz, Kerri; Murdock, Courtney C.; Rohr, Jason R.; Ryan, Sadie J.; Savage, Van; Shocket, Marta S.; Stewart-Ibarra, Anna M.; Thomas, Matthew B.; Weikel, Daniel P. (PLOS, 2017-04)Recent epidemics of Zika, dengue, and chikungunya have heightened the need to understand the seasonal and geographic range of transmission by Aedes aegypti and Ae. albopictus mosquitoes. We use mechanistic transmission models to derive predictions for how the probability and magnitude of transmission for Zika, chikungunya, and dengue change with mean temperature, and we show that these predictions are well matched by human case data. Across all three viruses, models and human case data both show that transmission occurs between 18-34 degrees C with maximal transmission occurring in a range from 26-29 degrees C. Controlling for population size and two socioeconomic factors, temperature-dependent transmission based on our mechanistic model is an important predictor of human transmission occurrence and incidence. Risk maps indicate that tropical and subtropical regions are suitable for extended seasonal or year-round transmission, but transmission in temperate areas is limited to at most three months per year even if vectors are present. Such brief transmission windows limit the likelihood of major epidemics following disease introduction in temperate zones.
- Mapping current and future thermal limits to suitability for malaria transmission by the invasive mosquito Anopheles stephensiRyan, Sadie J.; Lippi, Catherine A.; Villena, Oswaldo C.; Singh, Aspen; Murdock, Courtney C.; Johnson, Leah R. (2023-03-21)Background Anopheles stephensi is a malaria-transmitting mosquito that has recently expanded from its primary range in Asia and the Middle East, to locations in Africa. This species is a competent vector of both Plasmodium falciparum and Plasmodium vivax malaria. Perhaps most alarming, the characteristics of An. stephensi, such as container breeding and anthropophily, make it particularly adept at exploiting built environments in areas with no prior history of malaria risk. Methods In this paper, global maps of thermal transmission suitability and people at risk (PAR) for malaria transmission by An. stephensi were created, under current and future climate. Temperature-dependent transmission suitability thresholds derived from recently published species-specific thermal curves were used to threshold gridded, monthly mean temperatures under current and future climatic conditions. These temperature driven transmission models were coupled with gridded population data for 2020 and 2050, under climate-matched scenarios for future outcomes, to compare with baseline predictions for 2020 populations. Results Using the Global Burden of Disease regions approach revealed that heterogenous regional increases and decreases in risk did not mask the overall pattern of massive increases of PAR for malaria transmission suitability with An. stephensi presence. General patterns of poleward expansion for thermal suitability were seen for both P. falciparum and P. vivax transmission potential. Conclusions Understanding the potential suitability for An. stephensi transmission in a changing climate provides a key tool for planning, given an ongoing invasion and expansion of the vector. Anticipating the potential impact of onward expansion to transmission suitable areas, and the size of population at risk under future climate scenarios, and where they occur, can serve as a large-scale call for attention, planning, and monitoring.
- Predicting the fundamental thermal niche of crop pests and diseases in a changing world: A case study on citrus greeningTaylor, Rachel A.; Ryan, Sadie J.; Lippi, Catherine A.; Hall, David G.; Narouei-Khandan, Hossein A.; Rohr, Jason R.; Johnson, Leah R. (2019-08)1. Predicting where crop pests and diseases can occur, both now and in the future under different climate change scenarios, is a major challenge for crop management. One solution is to estimate the fundamental thermal niche of the pest/disease to indicate where establishment is possible. Here, we develop methods for estimating and displaying the fundamental thermal niche of pests and pathogens and apply these methods to Huanglongbing (HLB), a vector-borne disease that is currently threatening the citrus industry worldwide. 2. We derive a suitability metric based on a mathematical model of HLB transmission between tree hosts and its vector Diaphorina citri, and incorporate the effect of temperature on vector traits using data from laboratory experiments performed at different temperatures. We validate the model using data on the historical range of HLB. 3. Our model predicts that transmission of HLB is possible between 16 and 33 degrees C with peak transmission at similar to 25 degrees C. The greatest uncertainty in our suitability metric is associated with the mortality of the vectors at peak transmission, and fecundity at the edges of the thermal range, indicating that these parameters need further experimental work. 4. We produce global thermal niche maps by plotting how many months each location is suitable for establishment of the pest/disease. This analysis reveals that the highest suitability for HLB occurs near the equator in large citrus-producing regions, such as Brazil and South-East Asia. Within the Northern Hemisphere, the Iberian peninsula and California are HLB suitable for up to 7 months of the year and are free of HLB currently. 5. Policy implications. We create a thermal niche map which indicates the places at greatest risk of establishment should a crop disease or pest enter these regions. This indicates where surveillance should be focused to prevent establishment. Our mechanistic method can be used to predict new areas for Huanglongbing transmission under different climate change scenarios and is easily adapted to other vector-borne diseases and crop pests.
- Thermal biology of mosquito-borne diseaseMordecai, Erin A.; Caldwell, Jamie M.; Grossman, Marissa K.; Lippi, Catherine A.; Johnson, Leah R.; Neira, Marco; Rohr, Jason R.; Ryan, Sadie J.; Savage, Van; Shocket, Marta S.; Sippy, Rachel; Ibarra, Anna M. Stewart; Thomas, Matthew B.; Villena, Oswaldo (Wiley, 2019-07-08)Mosquito-borne diseases cause a major burden of disease worldwide. The vital rates of these ectothermic vectors and parasites respond strongly and nonlinearly to temperature and therefore to climate change. Here, we review how trait-based approaches can synthesise and mechanistically predict the temperature dependence of transmission across vectors, pathogens, and environments. We present 11 pathogens transmitted by 15 different mosquito species – including globally important diseases like malaria, dengue, and Zika – synthesised from previously published studies. Transmission varied strongly and unimodally with temperature, peaking at 23–29ºC and declining to zero below 9–23ºC and above 32–38ºC. Different traits restricted transmission at low versus high temperatures, and temperature effects on transmission varied by both mosquito and parasite species. Temperate pathogens exhibit broader thermal ranges and cooler thermal minima and optima than tropical pathogens. Among tropical pathogens, malaria and Ross River virus had lower thermal optima (25–26ºC) while dengue and Zika viruses had the highest (29ºC) thermal optima. We expect warming to increase transmission below thermal optima but decrease transmission above optima. Key directions for future work include linking mechanistic models to field transmission, combining temperature effects with control measures, incorporating trait variation and temperature variation, and investigating climate adaptation and migration.