Browsing by Author "Little, John C."
Now showing 1 - 20 of 145
Results Per Page
Sort Options
- Addressing and Assessing Lead Threats in Drinking Water: Non-Leaded Brass, Product Testing, Particulate Lead Occurrence and Effects of the Chloride to Sulfate Mass Ratio on CorrosionTriantafyllidou, Simoni (Virginia Tech, 2006-09-11)Growing concern over adverse health effects from low level lead exposure motivated reassessment of lead occurrence in drinking water, from the perspective of 1) possibly eliminating lead from new brass materials, and 2) performance testing of existing products. During the course of this thesis work, it was discovered that several cases of childhood lead poisoning in North Carolina, South Carolina and Washington D.C. occurred from contaminated potable water. That disconcerting finding prompted additional work into 3) deficiencies in existing lead testing of drinking water samples, and 4) impacts of water treatment steps on lead leaching. Meters, components, and fittings manufactured from non-leaded brass (< 0.25 percent lead content) are increasingly specified for use in water distribution systems and premise plumbing, in response to California's Proposition 65 and the proposed Lead Free Drinking Water Act. An in-depth review of the available literature revealed that non-leaded brass releases minimal amounts of lead and other contaminants of concern to drinking water. There is legitimate concern about the corrosion resistance and longevity of these non-leaded alloys in the range of waters that will be encountered in practice. Nonetheless, when the potential impacts to manufacturers, utilities and consumers are considered, non-leaded brasses appear to be attractive albeit at slightly higher cost. For existing leaded brass products, concerns have been raised over potential limitations of performance standards used to certify the products as "safe" in the marketplace. The ANSI/NSF 61 Section 9 test is the industry standard, and its protocol is critically evaluated from the perspective of the leaching solution chemistry. Testing indicated that the protocol water is reasonably representative of a typical water supply. However, some lower pH and lower alkalinity waters can be much more aggressive than the existing section 9 water, and for potable water with these characteristics, problems with higher than desired lead leaching may occur. It may be desirable to tighten the standard's pass/fail lead criterion in order to account for this problem in practice. Several cases of childhood lead poisoning from water have been recently encountered, which prompted environmental assessments. It was visually obvious that some of the lead particles ingested by these children, present in water from the tap, were not completely dissolving in the standard method with weak acid recommended by the US EPA. A laboratory investigation proved that up to 80% particulate lead in water samples could be "missed" by the standard protocol. Unfortunately, tests with simulated gastric fluid revealed that much of this particulate lead would be bioavailable in the presence of chloride, warmer temperatures and lower pH inside the human stomach. It is recommended that water utilities be alert to this possible problem and that environmental assessments of lead poisoned children use stronger digestions to detect lead in water. Several of the lead poisoning instances occurred after the utility changed both disinfectant chemicals (from chlorine to chloramine) and coagulant types. Although authorities initially thought chloramine was the cause based on experiences in Washington D.C., bench scale studies in this work proved that a change in coagulant from aluminum sulfate to either ferric chloride or polyaluminum chloride was in fact the main reason of the lead spikes. The reduction in sulfate and increase in chloride increased the chloride to sulfate mass ratio of the water supply. A higher chloride to sulfate mass ratio triggered much higher (2.3-40 times more) lead leaching from solder connected to copper pipe. The adverse effects of the increase in the ratio could not be eliminated by adding a corrosion inhibitor.
- Air Pollution Distribution under an Elevated Train Station (A Case Study of Silom Station in Downtown Bangkok)Charusombat, Umarporn (Virginia Tech, 1998-12-14)To solve traffic congestion in Bangkok, the Bangkok Mass Transit system (BTS) constructed an overhead rail system with 24 stations. The BTS train station, S2, in this study area covers Silom road and obstructs the air pollutant dispersion in a congestion area. The 1: 200 physical model of the buildings along Silom road with the train station, S2, was simulated in this research to determine the air pollutant dispersion in the train station area. A tracer gas (CO₂) was emitted from a simulated line source with emission rates of 0.383, 0.681, 1.293, 2.586, 5.177 and 10.77 mg/min to simulate actual pollutant emission rates. The CO₂ gas was sampled at 55 locations in the model. The Kriging method was used to interpolate the data in the study area. . Emission rates were used to make the difference between measured CO₂ in the model area and ambient CO₂ large enough to be differentiated. Regression Analysis was used to relate analytically the mass emission rate to the CO₂ concentration. The results indicate that the maximum CO concentrations exceed the 30 ppm Bangkok standard along the Southeast side of Silom Road at the passenger platform level. Drivers will acquire more harmful levels of CO than pedestrians at street level, especially near the Southwest end of the train station. NO₂ concentrations do not exceed the standard (0.17 ppm) at street level. The highest predicted VOC is 1.05 ppm. These results may be used in the future for numerical modeling study.
- Air Quality in Mexico City: Spatial and Temporal Variations of Particulate Polycyclic Aromatic Hydrocarbons and Source Apportionment of Gasoline-Versus-Diesel Vehicle EmissionsThornhill, Dwight Anthony Corey (Virginia Tech, 2007-07-26)The Mexico City Metropolitan Area (MCMA) is one of the largest cities in the world, and as with many megacities worldwide, it experiences serious air quality and pollution problems, especially with ozone and particulate matter. Ozone levels exceed the health-based standard, which is equivalent to the U.S. standard, on approximately 80% of all days, and concentrations of particulate matter 10 μm and smaller (PM10) exceed the standard on more than 40% of all days in most years. Particulate polycyclic aromatic hydrocarbons (PAHs) are a class of semi-volatile compounds that are formed during combustion and many of these compounds are known or suspected carcinogens. Recent studies on PAHs in Mexico City indicate that very high concentrations have been observed there and may pose a serious health hazard. The first part of this thesis describes results from the Megacities Initiative: Local and Regional Observations (MILAGRO) study in Mexico City in March 2006. During this field campaign, we measured PAH and aerosol active surface area (AS) concentrations at six different locations throughout the city using the Aerodyne Mobile Laboratory (AML). The different sites encompassed a mix of residential, commercial, industrial, and undeveloped land use. The goals of this research were to describe spatial and temporal patterns in PAH and AS concentrations, to gain insight into sources of PAHs, and to quantify the relationships between PAHs and other pollutants. We observed that the highest measurements were generally found at sites with dense traffic networks. Also, PAH concentrations varied considerably in space. An important implication of this result is that for risk assessment studies, a single monitoring site will not adequately represent an individual's exposure. Source identification and apportionment are essential for developing effective control strategies to improve air quality and therefore reduce the health impacts associated with fine particulate matter and PAHs. However, very few studies have separated gasoline- versus diesel-powered vehicle emissions under a variety of on-road driving conditions. The second part of this thesis focuses on distinguishing between the two types of engine emissions within the MCMA using positive matrix factorization (PMF) receptor modeling. The Aerodyne Mobile Laboratory drove throughout the MCMA in March 2006 and measured on-road concentrations of a large suite of gaseous and particulate pollutants, including carbon dioxide, carbon monoxide (CO), nitric oxide (NO), benzene (C6H6), formaldehyde (HCHO), ammonia (NH3), fine particulate matter (PM2.5), PAHs, and black carbon (BC). These pollutant species served as the input data for the receptor model. Fuel-based emission factors and annual emissions within Mexico City were then calculated from the source profiles of the PMF model and fuel sales data. We found that gasoline-powered vehicles were responsible for 90% of mobile source CO emissions and 85% of VOCs, while diesel-powered vehicles accounted for almost all of NO emissions (99.98%). Furthermore, the annual emissions estimates for CO and VOC were lower than estimated during the MCMA-2003 field campaign. The number of megacities is expected to grow dramatically in the coming decades. As one of the world's largest megacities, Mexico City serves as a model for studying air quality problems in highly populated, extremely polluted environments. The results of this work can be used by policy makers to improve air quality and reduce related health risks in Mexico City and other megacities.
- Airborne Transmission of Influenza a Virus in Indoor EnvironmentsYang, Wan (Virginia Tech, 2012-03-30)Despite formidable advances in virology and medicine in recent decades, we know remarkably little about the dynamics of the influenza virus in the environment during transmission between hosts. There is still controversy over the relative importance of various transmission routes, and the seasonality of influenza remains unexplained. This work focuses on developing new knowledge about influenza transmission via the airborne route and the virus' inter-host dynamics in droplets and aerosols. We measured airborne concentrations of influenza A viruses (IAVs) and size distributions of their carrier aerosols in a health center, a daycare center, and airplanes. Results indicate that the majority of viruses are associated with aerosols smaller than 2.5 µm and that concentrations are sufficient to induce infection. We further modeled the fate and transport of IAV-laden droplets expelled from a cough into a room, as a function of relative humidity (RH) and droplet size. The model shows that airborne concentrations of infectious IAV vary with RH through its influence on virus inactivation and droplet size, which shrinks due to evaporation. IAVs associated with large droplets are removed mostly by settling, while those associated with aerosols smaller than 5 µm are removed mainly by ventilation and inactivation. To investigate the relationship between RH and influenza transmission further, we measured the viability of IAV in droplets at varying RHs. Results suggest that there exist three regimes defined by RH: physiological conditions (~100% RH) with high viability, concentrated conditions (~50% to ~99% RH) with lower viability, and dry conditions (<~50% RH) with high viability. A droplet's extent of evaporation, which is determined by RH, affects solute concentrations in the droplet, and these appear to influence viability. This research considerably advances the current understanding of the dynamics of the influenza virus while it is airborne and provides an explanation for influenza's seasonality. Increased influenza activity in winter in temperate regions could be due to greater potential for IAV carrier aerosols to remain airborne and higher viability of IAV at low RH. In tropical regions, transmission could be enhanced due to better survival of IAV at extremely high RH.
- Application of a Mobile Flux Lab for the Atmospheric Measurement of Emissions (FLAME)Moore, Tim Orland II (Virginia Tech, 2009-09-08)According to the World Health Organization, urban air pollution is a high public health priority due its linkage to cardio-pulmonary disease and association with increased mortality and morbidity (1, 2). Additionally, air pollution impacts climate change, visibility, and ecosystem health. The development of effective strategies for improving air quality requires accurate estimates of air pollutant emissions. In response to the need for new approaches to measuring emissions, we have designed a mobile Flux Lab for the Atmospheric Measurement of Emissions (FLAME) that applies a proven, science-based method known as eddy covariance for the direct quantification of anthropogenic emissions to the atmosphere. The mobile flux lab is a tool with novel, multifaceted abilities to assess air quality and improve the fidelity of emission inventories. Measurements of air pollutant concentrations in multiple locations at the neighborhood scale can provide much greater spatial resolution for population exposure assessments. The lab's mobility allows it to target specific sources, and plumes from these can be analyzed to determine emission factors. Through eddy covariance, the lab provides the new ability to directly measure emissions of a suite of air pollutants. We have deployed the FLAME to three different settings: a rural Appalachian town where coal transport is the dominant industry; schools in the medium-sized city of Roanoke, Virginia; and the large urban areas around Norfolk, Virginia, to measure neighborhood-scale emissions of air pollution. These areas routinely experience high ozone and particulate matter concentrations and include a diverse array of residential neighborhoods and industries. The FLAME is able to capture emissions from all ground-based sources, such as motor vehicles, rail and barge traffic, refuse fires and refueling stations, for which no direct measurement method has been available previously. Experiments focus on carbon dioxide (CO₂), the principal greenhouse gas responsible for climate change; nitrogen oxides (NOx), a key ingredient in ground-level ozone and acid rain; volatile organic compounds (VOCs), a second key ingredient in ozone and many of which are air toxics; and fine particulate matter (PM2.5), a cause of mortality, decreased visibility, and climate change. This research provides some of the first measurements of neighborhood-scale anthropogenic emissions of CO₂, NOx, VOCs and PM2.5 and as a result, the first opportunity to validate official emission inventories directly. The results indicate that a mobile eddy covariance system can be used successfully to measure fluxes of multiple pollutants in a variety of urban settings. With certain pollutants in certain locations, flux measurements confirmed inventories, but in others, they disagreed by factors of up to five, suggesting that parts of the inventory may be severely over- or underestimated. Over the scale of a few kilometers within a city, emissions were highly heterogeneous in both space and time. FLAME-based measurements also confirmed published emission factors from coal barges and showed that idling vehicles are the dominant source of emissions of air toxics around seven schools in southwest Virginia. Measurements from this study corroborate existing emission inventories of CO₂ and NOx and suggest that inventories of PM2.5 may be overestimated. Despite the tremendous spatial and temporal variability in emissions found in dense urban areas, CO₂ fluxes on average are very similar across the areas in this study and other urban areas in the developed world. Nevertheless, the high level of variability in spatial and temporal patterns of emissions presents a challenge to air quality modelers. The finding that emissions from idling vehicles at schools are likely responsible for creating hot spots of air toxics adds to the urgency of implementing no-idling and other rules to reduce the exposure of children to such pollutants. Ultimately, the results of this study can be used in combination with knowledge from existing emission inventories to improve the science and policies surrounding air pollution.
- Applying a Coupled Hydrologic-Economic Modeling Framework: Evaluating Alternative Options for Reducing Impacts for Downstream Locations in Response to Upstream DevelopmentAmaya, Maria; Duchin, Faye; Hester, Erich; Little, John C. (MDPI, 2022-05-28)Economic input-output and watershed models provide useful results, but these kinds of models do not use the same spatial units, which typically limits their integration. A modular hydrologic-economic modeling framework is designed to couple the Rectangular Choice-of-Technology (RCOT) model, a physically constrained, input-output (I-O) model, with the Hydrological Simulation Program-Fortran (HSPF). Integrating these two models can address questions relevant to both economists and hydrologists, beyond addressing only administrative or watershed concerns. This framework is utilized to evaluate alternative future development prospects within Fauquier County, northern Virginia, specifically residential build-up, and agricultural intensification in the upstream location of the local watershed. Scenarios are designed to evaluate the downstream impacts on watershed health caused by upstream development and changes made within the economic sectors in response to these impacts. In the first case, an alternative residential water technology is more efficient than the standard for ensuring adequate water supply downstream. For scenarios involving upstream agricultural intensification, a crop shift from grains to fruits and vegetables is the most efficient of the alternatives considered. This framework captures two-way feedback between watershed and economic systems that expands the types of questions one can address beyond those that can be analyzed using these models individually.
- Applying a coupled hydrologic-economic modeling framework: Evaluating conjunctive use strategies for alleviating seasonal watershed impacts caused by agricultural intensificationAmaya, Maria; Duchin, Faye; Hester, Erich; Little, John C. (Frontiers, 2022-08-22)Economic models and watershed models provide useful results, but when seeking to integrate these systems, the temporal units typically utilized by these models must be reconciled. A hydrologic-economic modeling framework is built to couple the Hydrological Simulation Program-Fortran (HSPF), representing the watershed system, with the Rectangular Choice-of-Technology (RCOT) model, an extension of the basic input-output (I-O) model. This framework is implemented at different sub-annual timesteps to gain insight in selecting temporal units best suited for addressing questions of interest to both economists and hydrologists. Scenarios are designed to examine seasonal increases in nitrogen concentration that occur because of agricultural intensification in Cedar Run Watershed, located in Fauquier County, northern Virginia. These scenarios also evaluate the selection among surface water, groundwater, or a mix of (conjunctive use) practices for irrigation within the crop farming sector in response to these seasonal impacts. When agricultural intensification occurs in Cedar Run Watershed, implementing conjunctive use in irrigation reduces the seasonal increases in nitrogen concentration to specified limits. The most efficient of the conjunctive use strategies explicitly considered varies depending on which timestep is utilized in the scenario: a bi-annual timestep (wet and dry season) vs. a seasonal timestep. This modeling framework captures the interactions between watershed and economic systems at a temporal resolution that expands the range of questions one can address beyond those that can be analyzed using the individual models linked in this framework.
- Aqueous Silica in the Environment: Effects on Iron Hydroxide Surface Chemistry and Implications for Natural and Engineered SystemsDavis, Christina Clarkson (Virginia Tech, 2000-05-09)Aqueous silica is present in all natural waters and exhibits a high affinity for the surfaces of iron oxides. Therefore, it is expected to play an important role in environmental systems. Experiments were conducted to investigate the fundamentals of silica sorption onto pre-formed ferric hydroxide at pH 5.0-9.5 and silica concentrations of 0-200 mg/L as SiO₂. Over the entire pH range studied, sorption densities exceeding monolayer sorption were observed at silica levels typical of natural waters. Under some circumstances, sorption exceeded a monolayer while the particle zeta potential remained positive, a phenomenon which is inconsistent with available models. To address this deficiency, an extended surface complexation model was formulated in which soluble dimeric silica sorbs directly to iron surface sites. This model fits sorption density data up to 0.40 mol SiO₂/mol Fe, and it accurately predicts trends in zeta potential and the observed H⁺ release during silica sorption to ferric hydroxide at pH 5.0 and 6.0. A second phase of research was aimed at identifying the practical implications of silica sorption to iron hydroxide in natural and engineered systems. Two types of surfaces were prepared by exposing pre-formed Fe(OH)₃ to aqueous silica (0-200 mg/L as SiO₂) for periods of 1.5 hours or 50 days. The concentration of pre-formed iron passing through a 0.45 micron pore size filter at pH 6.0-9.5 increased as the solids aged in the presence of silica. Consistent with formation of small, stable colloids, "soluble" iron concentrations exceeded 0.2 mg/L only at zeta potentials < -15 mV. When arsenate was added to iron hydroxide particles equilibrated with silica for 1.5 hours, percentage arsenate removals were high. In contrast, arsenate removals decreased markedly as pH and silica concentrations increased if silica was pre-equilibrated with the iron for 50 days. Trends in percentage removal of humic substances were similar. Competition for sorption sites was the main cause of hindered anionic contaminant removal. However, interference with hydrolysis and precipitation are expected to be important under some circumstances, particularly during water treatment.
- Assessing Climatic Hazards in Coastal Socio-Ecological Systems using Complex System ApproachesNourali, Zahra (Virginia Tech, 2024-05-31)Coastal socio-ecological systems face unprecedented challenges due to climate change, with impacts encompassing long-term, chronic changes and short-term extreme events. These events will impact society in many ways and prompt human responses that are extremely challenging to predict. This dissertation employs complex systems methods of agent-based modeling and machine learning to simulate the interactions between climatic stressors such as increased flooding and extreme weather and socio-economic aspects of coastal human systems. Escalating sea-level rise and intensified flooding has the potential to prompt relocation from flood-prone coastal areas. This can reduce flood exposure but also disconnect people from their homes and communities, sever longstanding social ties, and lower the tax base leading to difficulties in providing government services. Chapter 2 demonstrates a stochastic agent-based model to simulate human relocation influenced by flooding events, particularly focusing on the responses of rural and urban communities in coastal Virginia and Maryland. The findings indicate that a stochastic, bottom-up social system simulator is able to replicate top-down population projections and provide a baseline for assessing the impact of increasingly intense flooding. Chapter 3 leverages this model to assess how incorporating heterogeneity in relocation decisions across socio-economic groups impacts flood-induced relocation patterns. The results demonstrate how this heterogeneity leads to a decrease in low-income households, yet a rise in the proportion of elderly individuals in flood-prone regions by the end of the simulation period. Flood-prone areas also exhibit distinct income clusters at the end of simulation time horizon compared to simulations with a homogenous relocation likelihood. Lastly, Chapter 4 explores relationships between extreme weather and agricultural losses in the Delmarva Peninsula. Existing research on climatic impacts to agriculture largely focuses on changes to major crop yields, providing limited insights into impacts on diverse regional agricultural systems where human management and adaptation play a large role. By comparing various multistep modeling configurations and machine learning techniques, this work demonstrates that machine learning methods can accurately simulate and predict agricultural losses across the complex agricultural landscape that exists on the Delmarva peninsula. The multistep configurations developed in this work are able to address data imbalance and improve models' capacity to classify and estimate damage occurrence, which depends on multiple geographical, seasonal, and climatic factors. Collectively, this work demonstrates the potential for advanced modeling techniques to accurately replicate and simulate the impacts of climate on complex socio-ecological systems, providing insights that can ultimately support coastal adaptation.
- Assessment of the fate of manganese in oxide-coated filtration systemsCrowe, Andrea L. (Virginia Tech, 1997-01-24)"This study examined the fate of manganese in manganese oxide (MnOx(s)) coated filter media. Specific objectives of the project included the following: 1. Determination of the effect of influent pH upon Mn(II) sorption and oxidation and upon the physical characteristics of the coating on the media. 2. Determination of the effect of backwash rate upon MnOx(s) coatings. 3. Examination of the effect of air scour upon MnOx(s) coatings. 4. Observation of the effect of an increasing MnOx(s) coating on the physical characteristics of anthracite coal filter media. 5. Development of an overall mass balance on manganese loading and accumulation on the filter media. Resolution of the stated objectives involved construction, optimization, and continuous operation of a pilot-scale filtration system for the purpose of removing manganese from filter-applied water. The pilot-scale filter system functioned like a typical water treatment plant filtration system with similar hydraulic loading rates, influent manganese concentrations, free chlorine dosage, filter media bed depths, filter run times, and backwash rates. With regard to the fate of manganese in MnOx(s)-coated filter media, it was determined that as long as free chlorine was present to oxidize sorbed manganese, manganese continued to accumulate and remained on the media in sufficient concentrations to promote continual removal of soluble Mn(II). While oxide coating that was susceptible to breakage was removed in backwash, some portion of coating remained on the media. The combination of MnOx(s) accumulation during filtration and its partial removal during backwash maintained a net amount of MnOx(s) coating optimal for catalyzing further manganese removal and, yet, did not hinder filtration for turbidity by significantly altering the size of the media. The results of the pilot-scale study also indicated the following pertinent conclusions: 1. Neutral or slightly acidic pH conditions (7 ≥ pH ≥ 6) inhibited Mn(11) oxidation before filtration and, instead, promoted sorption and oxidation of Mn(II) on MnOx(s)-coated media. Alkaline filter influent pH (pH > 7) allowed some Mn(II) oxidation before filtration, resulting in significant manganese removal by MnOx(s) particle filtration. 2. Although the intent of MnOx(s)-coating on the filter media was to remove influent Mn(II) from filter-applied water, MnOx(s) that was removed by particle filtration also provided MnOx(s) surface area within the filter and, thus, additional sorption sites for Mn(II) removal. 3. Increases in fluid backwashing rate tended to produce greater amounts of MnOx(s) release from filter media for the duration of these backwash operations. However, backwashing did not result in complete MnOx(s) release from the media surface; rather, there was always sufficient Mn0Ox(s) retained to permit efficient soluble Mn(II) removal after the filtration operations were restarted. Removal of soluble Mn(II) by sorption and oxidation proved to be a dependable, low-maintenance Mn(II) removal technique that worked well within a wide range of raw water influent conditions. Because the process is cost-effective and easily integrated into new or existing water treatment facilities, it is an economical and competitive alternative for removal of soluble Mn(II)."
- Atmospheric Impact of Biogenic Volatile Organic Compounds: Improving Measurement and Modeling CapabilitiesPanji, Namrata Shanmukh (Virginia Tech, 2024-08-23)Biogenic volatile organic compounds (BVOCs) are naturally occurring organic compounds emitted by plants, trees, and ecosystems, exerting a profound influence on the Earth's atmosphere, air quality, climate, and ecosystem dynamics. This research project aims to advance our understanding of BVOC emissions and their implications through a comprehensive and multi-faceted investigation. We investigate the dynamics of BVOCs in the atmosphere through three key objectives. First, we introduce a novel enriching inlet that uses selective permeation to preconcentrate reactive organic gases in small sample flows for atmospheric gas sampling, enhancing the sensitivity and detection limits of analytical instruments. Enrichments between 4640% and 111% were measured for major reactive atmospheric gases at ultra low flow rates and roughly several hundred percent for ambient samples at moderately low flow rates. Second, we constrain light-dependency in BVOC emissions models by comparing modeled and long-term observed BVOC concentrations measured at a mid-canopy monitoring site in a southeastern US forest. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Framework for 0-D Atmospheric Modeling (F0AM) were utilized to simulate emissions and chemical transformations, respectively to disentangle the time- and species-specificity of light dependency for various BVOC (α-pinene, camphene, and α-fenchene are completely light-independent and limonene, β-thujene, sabinene, and γ-terpinene are seasonally light-dependent). Finally, we examine these models deeper to investigate uncertainties and highlight current limitations due to variability in planetary boundary layer height (PBLH) datasets. We highlight the significance of simultaneous PBLH and BVOC measurements for improving the accuracy of BVOC concentration models. We show that a lack of co-located measurements is a large source of uncertainty in modeling BVOC concentrations. The successful completion of these objectives contributes to a better understanding of the complex interactions between BVOC emissions and atmospheric chemistry.
- Biological Aerated Filters: Oxygen Transfer and Possible Biological EnhancementLeung, Susanna (Virginia Tech, 2003-04-07)A submerged-media biological aerated filter (BAF) has been studied to 1) evaluate oxygen transfer kinetics under conditions without biological growth and 2) determine the influence of biological growth on the rate of oxygen transfer. Collectively, the study evaluates the rates of supply and consumption of oxygen in BAFs. The mass-transfer characteristics of a submerged-media BAF were initially determined over a wide range of gas and liquid flow rates without the presence of bacteria. The mass-transfer coefficients (KLa(T)) were measured using a nitrogen gas stripping method and were found to increase as both gas and liquid superficial velocities increase, with values ranging from approximately 40 to 380 h??. The effect of parameters including the gas and liquid velocities, dirty water to clean water ratio, and temperature dependence was successfully correlated within +/- 20% of the experimental KLa value. The effects of the media size and gas holdup fractions were also investigated. Stagnant gas holdup did not significantly influence the rate of oxygen transfer. Dynamic gas holdup and the difference between total and stagnant gas holdup were found to increase with an increase in gas velocity. Neither liquid velocity nor liquid temperature was determined to have a significant impact on gas holdup. A tertiary nitrification BAF pilot unit was then operated for 5 months downstream of a secondary treatment unit at a domestic wastewater treatment facility. The study investigated the oxygen transfer capabilities of the nitrifying unit with high oxygen demand requirements through a series of aeration process tests and explored the presence of oxygen transfer enhancements by further analyzing the actual transfer mechanism limitations. It was determined that (assuming OTE equals 20 percent) aerating the BAF pilot unit based on the stoichiometric aeration demand resulted in overaeration of the unit, especially at lower pollutant loading rates. Endogenous respiration contributed to only 2 to 7 percent of the total oxygen demand with regions of biomass activity changing with varying loading conditions. An enhanced oxygen transfer factor was determined in the biologically active pilot. Although it cannot be definitively concluded that the observed oxygen transfer factor is either due to biological activity or not simply an artifact of measurement/analysis techniques, the enhancement factor can be mathematically accounted for by either an increase in the KLa factor or the associated driving force using a proposed enhanced bubble theory.
- The Biological Sludge Reduction by anaerobic/aerobic cyclingKhanthongthip, Passkorn (Virginia Tech, 2010-03-29)An activated sludge system that incorporates a sidestream anaerobic bioreactor, called the Cannibal process, was the focus of this study. A prior study of this process (Novak et al., 2007) found that this system generated about 60% less solids than conventional activated sludge without any negative effects on the effluent quality. Although that study showed substantial solids reduction, questions remain concerning the specific mechanism(s) that account for the solids loss. In this study, the mechanisms that account for the loss of biological solids was the focus of the investigation. The first part of this study was conducted to evaluate those effects in terms of the role of iron in the influent wastewater and feeding patterns on the performance of the Cannibal system. It was found that the Cannibal system with high iron in the influent produced less biological solids than the system receiving low iron. The data also showed that the Cannibal system operated under fast feed (high substrate pressure) produced much less solids than the system with slow feed (low substrate pressure). The high substrate pressure was achieved by feeding the influent wastewater to the Cannibal system over a short time period so that the substrate concentration would initially peak and then decline as degradation occurred. This is called "fast feed." For low substrate pressure, the influent was added slowly so the substrate concentration remained low at all times. This is called "slow feed." Later, an attempt to increase substrate pressure in the slow feed Cannibal system was conducted by either manipulating the aeration patterns or adding a small reactor in front of the main reactor (selector). It was found that either interrupting aeration in the aerobic reactor or providing a small aerobic reactor in front of the main reactor resulted in an increase in solids reduction. The second part of this study was to investigate the mechanisms of floc destruction in the fast and the slow feed Cannnibal systems. It was found that higher accumulation of biopolymers (proteins and polysaccharides) occurred in the fast feed system and this was associated with a greater solids reduction in the fast than the slow feed system. In addition, more protein hydrolysis and more Fe(III)-reducing microorganism activity in the fast feed environment were found to be factors in higher solids reduction. The last part of this study was to investigate the structure of the Cannibal sludge flocs generated under the fast and the slow feed conditions. It was found that the readily biodegradable (1 kDa.) protein is larger in the flocs from the fast feed than the slow feed Cannibal system. This resulted in higher floc destruction in the fast feed condition.
- Changes in Septic Tank Effluent Due to Water Softener UseHogan, Patrick Lynn (Virginia Tech, 2012-09-28)The compatibility of home water softeners and septic tanks is of concern for the on-site wastewater treatment community. Research has shown that high sodium levels in activated sludge plants can lead to deflocculation and poor effluent quality. Therefore, it is logical to assume that high sodium levels that result from the exchange of calcium and magnesium for sodium in home softeners could give rise to poor effluent quality from septic tanks, leading to shortened lives of drain fields. Additionally, the release of regeneration discharges to the septic tank might further damage performance. This study was undertaken to investigate the effect home ion-exchange softeners have on septic tank performance. A column study was set up and varying levels of sodium were added to wastewater influent and these were fed to columns that contained solids collected from operating septic tanks. In addition, slug influent solutions, which mimic regeneration flow, with varying amounts of excess sodium were investigated. To reinforce the lab column experiments, data were obtained from private septic tanks to determine the effluent quality from septic tanks both diverting and receiving the regeneration flow. Also utilized were graduated cylinder experiments, where the effect of sodium on grease flocculation was determined, and batch anaerobic digestion studies, which determined the effect sodium has on the production of gases and the degradation of solids. The study showed that the addition of sodium to septic tanks is likely to impact the effluent quality of sewage discharged from a septic tank to a drain field. The common way of measuring ion concentrations for comparison in this study was to obtain the monovalent to divalent ratio (M/D Ratio). This is simply the concentration of the sodium ions in solution divided by the concentrations of magnesium and calcium, on an equivalent weight basis (all other monovalent and divalent ions were negligible). Slug solutions of high levels of salts (Septic Tank Effluent M/D = 11), mimicking regeneration wastes from water softeners with an inefficient regeneration cycle, increased the effluent solids, COD and BOD. However, if the regeneration wastes contained the same amount of calcium and magnesium, but a smaller amount of sodium (Septic Tank Effluent M/D = 5), the negative effect on these effluent characteristics was greatly lessened. In an optimum case with a regeneration solution containing a minimal amount of excess sodium (Septic Tank Effluent M/D = 3), the effluent characteristics were often actually more favorable than in similar situations where the regeneration wastes were diverted (Septic Tank Effluent M/D = 2). The case studies reinforced these data, showing that sodium concentrations correlated with an increased discharge of solids to the drain field. The studies on grease flocculation as well as anaerobic digestion suggest that these processes are not affected by the sodium level. Overall, it appears that the use of home softeners with septic tanks may have an effect on solids discharge to the drain field and the level of impact will depend on the level of hardness in the water, whether the regeneration waste is discharged to the septic tank, and the amount of excess sodium present in regeneration wastes.
- Characterization and modeling of soluble manganese removal from drinking water by oxide-coated filter mediaMerkle, Peter B. (Virginia Tech, 1995)Where Mn²⁺ (aq) is found in water supplies, filter media may naturally develop surface coatings bearing MnOx(s). These may absorb Mn²⁺ (aq), and in the presence of oxidant, sorbed Mn²⁺* is oxidized to MnOx(s), regenerating sorption capacity. The filter accomplishes Mn²⁺ (aq) removal, a process called the "natural greensand effect". Characterization of naturally coated media showed variation in coating composition and structure. With thicknesses from 1 - 125 μm, primary coating constituents were Al and Mn, with incorporation of minor amounts of Fe, Cu, and Si and trace elements. "Growth ring" features in coating cross-section corresponding to compositional variation were characterized by SEM, electron microprobe, and energy-dispersive x-ray analysis (EDS). Media surface areas of 2 - 135 m² g⁻¹ land microporosity of 15 - 533 cm³ kg⁻¹ were linearly related to extractable Mn content. Diatom remains found in coatings suggest a key role for coating deposition in filtration phenomena. Atomic force microscopy found surface self-similarity over 10 nm - 10 μm. X-ray photoelectron spectroscopy (XPS) confirmed heterogeneous surface composition including C, Al, Si, and Fe. A method to rapidly deposit up to 4 mg g⁻¹ Mn on media was developed, employing sequential batch and recycle reactors. Mn(IV) was the surface species found by XPS analysis. The Freundlich isotherm described Mn²⁺ sorption on this and the naturally coated media; sorption capacity increased between pH 6.0 and 7.5, and was reduced by [Ca²⁺] = 60 mg L⁻¹. The global Mn²⁺ oxidation rates for all coated media at pH 7.5 were 0.008 - 0.11 mg Mn²⁺ g⁻¹ hr⁻¹: rates increased with flow and decreased with pH. A numerical process model for sorption and oxidation of Mn²⁺ (aq) was calibrated with short bed absorber and differential reactor columns. The Freundlich isotherm, film transport, internal diffusion, and hydrodynamic dispersion were included, with sorption capacity apportioned into kinetically available and unavailable sites. The model performed well in calibration, predicting dynamic system response across a range of flow, pH, [Ca²⁺], and reactant levels. Model performance in validation was less satisfactory, probably due to experimental difficulties and the sensitivity of process performance on recent coating history and media regeneration status.
- Characterization of Magnetite Nanoparticle Reactivity in the Presence of Carbon TetrachlorideHeathcock, April Marie (Virginia Tech, 2006-07-24)Throughout the United States, there are a large number of groundwater systems contaminated by chlorinated organic compounds. Of these compounds, carbon tetrachloride (CT) is one of the most frequently encountered due to its past, widespread industrial use. In anaerobic groundwater environments, CT has been shown to be susceptible to degradation by both biotic and abiotic processes. One abiotic process that has been researched extensively is the reduction of CT by iron metal and associated iron oxides and hydroxides. Magnetite, an iron oxide, is a ubiquitous component of many subsurface environments and has been investigated as a potential groundwater remediation technology. One beneficial characteristic of magnetite is the capability to be synthetically produced in various sizes and shapes - including particles within the nanoscale range. Nanoscale particles have been shown to be more reactive towards contaminants than larger sized particles due to their large surface areas and high surface reactivity. This project was designed to characterize the behavior of synthetic magnetite in the presence of carbon tetrachloride under anaerobic conditions.
- Characterization of Urban Air Pollutant Emissions by Eddy Covariance using a Mobile Flux LaboratoryKlapmeyer, Michael Evan (Virginia Tech, 2012-04-26)Air quality management strategies in the US are developed largely from estimates of emissions, some highly uncertain, rather than actual measurements. Improved knowledge based on measurements of real-world emissions is needed to increase the effectiveness of these strategies. Consequently, the objectives of this research were to (1) quantify relationships among urban emissions sources, land use, and demographics, (2) determine the spatial and temporal variability of emissions, and (3) evaluate the accuracy of official emissions estimates. These objectives guided three field campaigns that employed a unique mobile laboratory equipped to measure pollutant fluxes by eddy covariance. The first campaign, conducted in Norfolk, Virginia, represented the first time fluxes of nitrogen oxides (NOx) were measured by eddy covariance in an urban environment. Fluxes agreed to within 10% of estimates in the National Emissions Inventory (NEI), but were three times higher than those of an inventory used for air quality modeling and planning. Additionally, measured fluxes were correlated with road density and increased development. The second campaign took place in the Tijuana-San Diego border region. Distinct spatial differences in fluxes of carbon dioxide (CO₂), NOx, and particles were revealed across four sampling locations with the lowest fluxes occurring in a residential neighborhood and the highest ones at a port of entry characterized by heavy motor vehicle traffic. Additionally, observed emissions of NOx and carbon monoxide were significantly higher than those in emissions inventories, suggesting the need for further refinement of the inventories. The third campaign focused on emissions at a regional airport in Roanoke, Virginia. NOx and particle number emissions indices (EIs) were calculated for aircraft, in terms of grams of pollutant emitted per kilogram of fuel burned. Observed NOx EIs were ~20% lower than those in an international databank. NOx EIs from takeoffs were significantly higher than those from taxiing, but relative differences for particle EIs were mixed. Observed NOx fluxes at the airport agreed to within 25% of estimates derived from the NEI. The results of this research will provide greater knowledge of urban impacts to air quality and will improve associated management strategies through increased accuracy of official emissions estimates.
- Characterization, Treatment, and Improvement of Aquacultural EffluentsMaillard, Vincent M. (Virginia Tech, 1998-12-11)During the water quality and sludge characterization phase, average effluent quality over the course of a day was not found to be impaired during a 7-month sampling and monitoring study at the three trout farms. However, effluent quality was found to change significantly during times of high farm activity (i.e. feeding, harvesting, cleaning, etc.). Normalized Total Suspended Solids (TSS) concentrations were found to be as high as 115 mg/l during harvesting and 63 mg/l during feeding. Solids characterization studies proved farm waste solids degrade over time and that their particle size distributions are a function of the feed size and activity of a certain raceway. Waste solids accumulation studies proved that the solids removal efficiency of farm sediment traps were very low, and after a certain period of time, they reached capacity due to particle scouring. A pilot plant was constructed in the water and sludge treatability phase to prove a baffled settling scheme was sufficient to treat average and peak TSS concentrations during a normal workweek. The study found optimal TSS removals at detention times of 15-20 minutes, and overflow rates of 77.4 – 48.9 m3/m2·d. Given economic, spatial, and operational constraints, sedimentation was found to be the most feasible treatment technology for raceway-system trout farms.
- Characterizing the Impact of Freshwater Salinization on Engineered Ecosystems: Implications for Performance, Resilience, and Self-Repair Through PhytoremediationLong, Samuel Bowen (Virginia Tech, 2023-06-15)Stormwater detention basins are commonly used in the Eastern United States to temporarily store and attenuate stormwater runoff, and also serve as habitats for native and exotic plants. However, during winter, these basins receive saline runoff from road salt application, which contributes to Freshwater Salinization Syndrome (FSS). Since limited research has connected direct measurement of soil and stormwater salinities to biodiversity and phytoremediation potential of salt-tolerant plant species, this thesis aimed to fill this gap. We selected a set of detention basins draining mostly pervious areas, parking lots, or roads in Northern Virginia and measured temporal variations in stormwater and soil salinities, depth profiles of soil salinities, plant community composition, and plant tissue ion concentration. The results indicated elevated levels of sodium, chloride, electrical conductivity (EC), and exchangeable sodium percentage (ESP)/sodium adsorption ratio (SAR) in soil and stormwater after road salt application during winter, followed by a decrease during the growing season for basins draining parking lots and roads. A subsequent increase at the end of the season was observed for all site types. While some stormwater samples exceeded toxicity thresholds, most soil samples did not exceed their respective thresholds nor reach saline or sodic conditions, and native and exotic plant species of both salt-sensitive and salt-tolerant classifications were observed at almost all sites, although proportions of each varied by site type. Tissue analysis of select plants revealed ionic concentrations that generally coincided with observed soil and stormwater concentrations at each major site type. These findings have implications for future detention basin planting regimes to mitigate FSS, and the thesis discusses native plants found to provide the most benefit for phytoremediation.
- Chemical Contaminants in Drinking Water: An Integrated Exposure AnalysisKhanal, Rajesh (Virginia Tech, 1999-05-10)The objective of this research is to develop an integrated exposure model, which performs uncertainty analysis of exposure to the entire range of chemical contaminants in drinking water via inhalation, ingestion and dermal sorption. The study is focused on a residential environment. The various water devices considered are shower, bath, bathroom, kitchen faucet, washing machine and the dishwasher. All devices impact inhalation exposure, while showering, bathing and washing hands are considered in the analysis of dermal exposure. A set of transient mass balance equations are solved numerically to predict the concentration profiles of a chemical contaminant for three different compartments in a house (shower, bathroom and main house). Inhalation exposure is computed by combining this concentration profile with the occupancy and activity patterns of a specific individual. Mathematical models of dermal penetration, which account for steady and non-steady state analysis, are used to estimate exposure via dermal absorption. Mass transfer coefficients are used to compute the fraction of contaminant remaining in water at the time of ingestion before estimating ingestion exposure. Three chemical contaminant in water: chloroform, chromium and methyl parathion are considered for detailed analysis. These contaminants cover a wide range in chemical properties. The magnitude of overall exposure and comparison of the relative contribution of individual exposure pathways for each contaminant is evaluated. The major pathway of exposure for chloroform is inhalation, which accounts for 2/3rd of the total exposure. Dermal absorption and ingestion exposures contribute almost equally to the remaining 1/3rd of total exposure for chloroform. Ingestion accounts for about 60% of total exposure for methyl parathion and the remaining 40% of exposure is via dermal sorption. Nearly all of the total exposure (98%) for chromium is via the ingestion pathway.