Browsing by Author "Liu, Bin"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global changeSong, Jian; Wan, Shiqiang; Piao, Shilong; Knapp, Alan K.; Classen, Aimee T.; Vicca, Sara; Ciais, Philippe; Hovenden, Mark J.; Leuzinger, Sebastian; Beier, Claus; Kardol, Paul; Xia, Jianyang; Liu, Qiang; Ru, Jingyi; Zhou, Zhenxing; Luo, Yiqi; Guo, Dali; Langley, J. Adam; Zscheischler, Jakob; Dukes, Jeffrey S.; Tang, Jianwu; Chen, Jiquan; Hofmockel, Kirsten S.; Kueppers, Lara M.; Rustad, Lindsey E.; Liu, Lingli; Smith, Melinda D.; Templer, Pamela H.; Thomas, R. Quinn; Norby, Richard J.; Phillips, Richard P.; Niu, Shuli; Fatichi, Simone; Wang, Yingping; Shao, Pengshuai; Han, Hongyan; Wang, Dandan; Lei, Lingjie; Wang, Jiali; Li, Xiaona; Zhang, Qian; Li, Xiaoming; Su, Fanglong; Liu, Bin; Yang, Fan; Ma, Gaigai; Li, Guoyong; Liu, Yanchun; Liu, Yinzhan; Yang, Zhongling; Zhang, Kesheng; Miao, Yuan; Hu, Mengjun; Yan, Chuang; Zhang, Ang; Zhong, Mingxing; Hui, Yan; Li, Ying; Zheng, Mengmei (2019-09)Direct quantification of terrestrial biosphere responses to global change is crucial for projections of future climate change in Earth system models. Here, we synthesized ecosystem carbon-cycling data from 1,119 experiments performed over the past four decades concerning changes in temperature, precipitation, CO2 and nitrogen across major terrestrial vegetation types of the world. Most experiments manipulated single rather than multiple global change drivers in temperate ecosystems of the USA, Europe and China. The magnitudes of warming and elevated CO2 treatments were consistent with the ranges of future projections, whereas those of precipitation changes and nitrogen inputs often exceeded the projected ranges. Increases in global change drivers consistently accelerated, but decreased precipitation slowed down carbon-cycle processes. Nonlinear (including synergistic and antagonistic) effects among global change drivers were rare. Belowground carbon allocation responded negatively to increased precipitation and nitrogen addition and positively to decreased precipitation and elevated CO2. The sensitivities of carbon variables to multiple global change drivers depended on the background climate and ecosystem condition, suggesting that Earth system models should be evaluated using site-specific conditions for best uses of this large dataset. Together, this synthesis underscores an urgent need to explore the interactions among multiple global change drivers in under-represented regions such as semi-arid ecosystems, forests in the tropics and subtropics, and Arctic tundra when forecasting future terrestrial carbon-climate feedback.
- Neuronal Na+ Channels Are Integral Components of Pro-Arrhythmic Na+/Ca2+ Signaling Nanodomain That Promotes Cardiac Arrhythmias During β-Adrenergic StimulationRadwański, Przemysław B.; Ho, Hsiang-Ting; Veeraraghavan, Rengasayee; Brunello, Lucia; Liu, Bin; Belevych, Andriy E.; Unudurthi, Sathya D.; Makara, Michael A.; Priori, Silvia G.; Volpe, Pompeo; Armoundas, Antonis A.; Dillmann, Wolfgang H.; Knollman, Björn C.; Mohler, Peter J.; Hund, Thomas J.; Gyorke, Sandor (Elsevier, 2016-06)Although triggered arrhythmias including catecholaminergic polymorphic ventricular tachycardia (CPVT) are often caused by increased levels of circulating catecholamines, the mechanistic link between β-adrenergic receptor (AR) stimulation and the subcellular/molecular arrhythmogenic trigger(s) is unclear. Here, we systematically investigated the subcellular and molecular consequences of β-AR stimulation in the promotion of catecholamine-induced cardiac arrhythmias. Using mouse models of cardiac calsequestrin-associated CPVT, we demonstrate that a subpopulation of Na+ channels, mainly the neuronal Na+ channels (nNav), colocalize with ryanodine receptor 2 (RyR2) and Na+/Ca2+ exchanger (NCX) and are a part of the β-AR-mediated arrhythmogenic process. Specifically, augmented Na+ entry via nNav in the settings of genetic defects within the RyR2 complex and enhanced sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA)-mediated SR Ca2+ refill is both an essential and a necessary factor for arrhythmogenesis. Furthermore, we show that augmentation of Na+ entry involves β-AR–mediated activation of CAMKII, subsequently leading to nNav augmentation. Importantly, selective pharmacological inhibition as well as silencing of Nav1.6 inhibit myocyte arrhythmic potential and prevent arrhythmias in vivo. Taken together, these data suggest that the arrhythmogenic alteration in Na+/Ca2+ handling evidenced ruing β-AR stimulation results, at least in part, from enhanced Na+ influx through nNav. Therefore, selective inhibition of these channels and of Nav1.6 in particular can serve as a potential antiarrhythmic therapy.
- Tumour heterogeneity revealed by unsupervised decomposition of dynamic contrast-enhanced magnetic resonance imaging is associated with underlying gene expression patterns and poor survival in breast cancer patientsFan, Ming; Xia, Pingping; Liu, Bin; Zhang, Lin; Wang, Yue; Gao, Xin; Li, Lihua (2019-10-17)Background Heterogeneity is a common finding within tumours. We evaluated the imaging features of tumours based on the decomposition of tumoural dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data to identify their prognostic value for breast cancer survival and to explore their biological importance. Methods Imaging features (n = 14), such as texture, histogram distribution and morphological features, were extracted to determine their associations with recurrence-free survival (RFS) in patients in the training cohort (n = 61) from The Cancer Imaging Archive (TCIA). The prognostic value of the features was evaluated in an independent dataset of 173 patients (i.e. the reproducibility cohort) from the TCIA I-SPY 1 TRIAL dataset. Radiogenomic analysis was performed in an additional cohort, the radiogenomic cohort (n = 87), using DCE-MRI from TCGA-BRCA and corresponding gene expression data from The Cancer Genome Atlas (TCGA). The MRI tumour area was decomposed by convex analysis of mixtures (CAM), resulting in 3 components that represent plasma input, fast-flow kinetics and slow-flow kinetics. The prognostic MRI features were associated with the gene expression module in which the pathway was analysed. Furthermore, a multigene signature for each prognostic imaging feature was built, and the prognostic value for RFS and overall survival (OS) was confirmed in an additional cohort from TCGA. Results Three image features (i.e. the maximum probability from the precontrast MR series, the median value from the second postcontrast series and the overall tumour volume) were independently correlated with RFS (p values of 0.0018, 0.0036 and 0.0032, respectively). The maximum probability feature from the fast-flow kinetics subregion was also significantly associated with RFS and OS in the reproducibility cohort. Additionally, this feature had a high correlation with the gene expression module (r = 0.59), and the pathway analysis showed that Ras signalling, a breast cancer-related pathway, was significantly enriched (corrected p value = 0.0044). Gene signatures (n = 43) associated with the maximum probability feature were assessed for associations with RFS (p = 0.035) and OS (p = 0.027) in an independent dataset containing 1010 gene expression samples. Among the 43 gene signatures, Ras signalling was also significantly enriched. Conclusions Dynamic pattern deconvolution revealed that tumour heterogeneity was associated with poor survival and cancer-related pathways in breast cancer.