Browsing by Author "Liu, Dongmin"
Now showing 1 - 20 of 71
Results Per Page
Sort Options
- Abscisic acid ameliorates glucose tolerance and obesity-induced inflammationGuri, Amir Joseph (Virginia Tech, 2007-10-19)Obesity is a disease characterized by chronic inflammation and the progressive loss in systemic insulin sensitivity. One of the more effective medications in the treatment of insulin resistance have been the thiazolidinediones (TZDs), which act through the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma ). Due to the many side-effects of TZDs, our laboratory sought out a natural phytochemical, abscisic acid (ABA), with chemical similarities to TZDs. Our first study demonstrated that ABA activates PPARgamma in vitro and significantly ameliorates white adipose tissue (WAT) inflammation and glucose tolerance in db/db mice. We next further examined the effect of ABA on the phenotype of adipose tissue macrophages (ATMs). In doing so, we discovered two separate ATM populations which differed in their expression of the macrophage surface glycoprotein and maturation marker F4/80 (F4/80hi vs F4/80lo). Dietary ABA-supplementation significantly reduced F4/80hiCCR2+ ATMs and had no effect on the F4/80lo population. Utilizing a tissue-specific knockout generated through Cre-lox recombination, we were able to determine that this effect was dependent on PPARgamma in immune cells. To further characterize the differences between the ATM subsets that were affected by ABA, we performed a multi-organ assessment (i.e., WAT, skeletal muscle and liver) of the effect of diet-induced obesity on the phenotype of infiltrating macrophages and T cells into metabolic organs. Based on our new data, we formulated a model by which F4/80hiCCR2hi ATMs infiltrate WAT and ultimately induce a CD11c+ pro-inflammatory phenotype in the resident F4/80loCCR2lo subset. Ultimately, our findings provide evidence that ABA has potential as an alternative preventive intervention, expound the role of PPARgamma in immune cells and, in general, expand our knowledge concerning the immunopathogenesis of obesity-induced insulin resistance.
- The anti-diabetic mechanisms by isoflavone genisteinFu, Zhuo (Virginia Tech, 2011-05-10)Diabetes is growing public health problem in the United States. Both in Type 1 and Type 2 diabetes, the deterioration of glycemic control over time is largely due to insulin secretory dysfunction and significant loss of functional β-cells. As such, the search for novel agents that promote β-cell survival and preserve functional β-cell mass are one of the essential strategies to prevent and treat the onset of diabetes. Genistein, a flavonoid in legumes and some herbal medicines, has various biological actions. It was recently shown that dietary intake of foods containing genistein improves diabetes in both experimental animals and humans. However, the potential anti-diabetic mechanisms of genistein are unclear. In the present study, we first investigated the effect of genistein on β-cell insulin secretion and proliferation and cellular signaling related to these effects in vitro and in vivo. We then determined its anti-diabetic potential in insulin-deficient and obese diabetic mouse models. The results in our study showed that exposure of clonal insulin secreting (INS1E) cells or isolated pancreatic islets to genistein at physiologically relevant concentrations (1-10 μM) enhanced glucose-stimulated insulin secretion (GSIS), whereas insulin content was not altered, suggesting that genistein-enhanced GSIS is not due to a modulation of insulin synthesis. This genistein's effect is protein tyrosine kinase- and KATP channel-independent. In addition, genistein had no effect on glucose transporter-2 expression or cellular ATP production, but similarly augmented pyruvate-stimulated insulin secretion in INS1E cells, indicating that genistein improvement of insulin secretion in β-cells is not related to an alternation in glucose uptake or the glycolytic pathway. Further, genistein (1-10 μM) induced both INS1 and human islet β-cell proliferation following 24 h of incubation, with 5 μM genistein inducing a maximal 27% increase. The effect of genistein on β-cell proliferation was neither dependent on estrogen receptors, nor shared by 17β-estradiol or a host of structurally related flavonoid compounds. Pharmacological or molecular intervention of PKA or ERK1/2 completely abolished genistein-stimulated β-cell proliferation, suggesting that both molecules are essential for genistein action. Consistent with its effect on cell proliferation, genistein induced cAMP/PKA signaling and subsequent phosphorylation of ERK1/2 in both INS1 cells and human islets. Furthermore, genistein induced protein expression of cyclin D1, a major cell-cycle regulator essential for β-cell growth. Dietary intake of genistein significantly improved hyperglycemia, glucose tolerance, and blood insulin levels in both insulin deficient type 1 and obese type 2 diabetic mice, concomitant with improved islet β-cell proliferation, survival, and mass. These changes were not due to alternations in animal body weight gain, food intake, fat deposit, plasma lipid profile, or peripheral insulin sensitivity. Collectively, these findings provide better understanding of the mechanism underlying the anti-diabetic effects of genistein. Loss of functional β-cell mass through apoptosis is central to the development of both T1D and T2D and islet β-cell preservation and regeneration are very important components of β-cell adaptation to increased apoptosis and insulin resistance and therefore holds promise as a treatment for this disease. In this context, these findings may potentially lead to the development of novel low-cost natural agents for prevention and treatment of diabetes.
- Assessing Metabolic Syndrome Prediction Quality Using Seven Anthropometric Indices Among Jordanian Adults: A Cross-Sectional StudyAl-Shami, Islam; Alkhalidy, Hana; Alnaser, Khadeejah; Mukattash, Tareq L.; Al Hourani, Huda; Alzboun, Tamara; Orabi, Aliaa; Liu, Dongmin (2022-12-06)Metabolic syndrome (MSyn) is a considerable health concern in developing and developed countries, and it is a critical predictor of all-cause mortality. Obesity, specifically central obesity, is highly associated with MSyn incidence and development. In this study, seven anthropometric indices (Body Mass Index (BMI), Waist circumference (WC), Waist-to-Height Ratio (WHtR), A Body Shape Index (ABSI), Body Roundness Index (BRI), conicity index (CI), and the Visceral Adiposity Index (VAI)) were used to identify individuals with MSyn among the Jordanian population. These indices were assessed to identify their superiority in predicting the risk of MSyn. A total of 756 subjects (410 were male and 346 were female) were met between May 2018 and September 2019 and enrolled in this study. Height, weight, and waist circumferences were measured and BMI, WHtR, ABSI, BRI, CI, and VAI were calculated. Fasting plasma glucose level, lipid profile, and blood pressure were measured. Receiver-operating characteristic (ROC) curve was used to determine the discriminatory power of the anthropometric indices as classifiers for MSyn presence using the Third Adult Treatment Panel III (ATP III) definition. MSyn prevalence was 42.5%, and obese women and men have a significantly higher prevalence. BRI and WHtR showed the highest ability to predict MSyn (AUC = 0.83 for both indices). The optimal cutoff point for an early diagnosis of MSyn was > 28.4 kg/m2 for BMI, > 98.5 cm for WC, > 5.13 for BRI, > 0.09 m11/6 kg−2/3 for ABSI, > 5.55 cm2 for AVI, > 1.33 m3/2 kg−1/2 for CI, and > 0.59 for WHtR with males having higher cutoff points for MSyn early detection than females. In conclusion, we found that WHtR and BRI may be the best-suggested indices for MSyn prediction among Jordanian adults. These indices are affordable and might result in better early detection for MSyn and thereby may be helpful in the prevention of MSyn and its complications.
- Baicalein, a novel anti-diabetic compoundFu, Yu (Virginia Tech, 2012-08-08)Both in type 1 (T1D) and type 2 diabetes (T2D), the deterioration of glycemic control over time is primarily caused by an inadequate mass and progressive dysfunction of ?-cells, leading to the impaired insulin secretion. Thus, the search for agents to protect b-cell and enhance its function is important for diabetes treatment. Studies have reported that baicalein, a flavone originally isolated from the roots of Chinese herb Scutellaria baicalensis, has various claimed beneficial effects on health, such as anti-oxidant, anti-viral, anti-thrombotic, and anti-inflammatory effects. However, it is unclear whether it exerts an anti-diabetic action. Here, we present evidence that baicalein may be a novel anti-diabetic agent. Specifically, dietary intake of baicalein significantly improved hyperglycemia, glucose tolerance, and blood insulin levels in high-fat diet (HFD)-fed middle-aged diabetic mice, which was associated with the improved isle t?-cell survival and mass. Baicalein treatment had no effect on food intake, body weight gain, circulating lipid profile, and insulin sensitivity in HFD-fed mice. In in-vitro studies, baicalein significantly augmented glucose-stimulated insulin secretion in insulin-secreting cells (INS1) and promotes viability of INS1 cells and human islets. These results demonstrate that baicalein may be a naturally occurring anti-diabetic agent by directly modulating pancreatic?-cell function.
- Central cannabinoid regulation of food intake in chickensZhang, Jin (Virginia Tech, 2005-06-22)Marijuana has been used for medicinal and recreational purposes for thousands of years. Many people think of marijuana in the context of an illegal drug. Because of the antimarijuana attitude, research with cannabinoids was neglected for a long time. Although this substance is related to social problems, scientists are interested in its action and possible medicinal properties. Since the identification of the structure of Î 9--tetrahydrocannabinol, the main psychoactive ingredient of marijuana, there has been increased interest in this compound. Following the discovery of two cannabinoid receptors, CB1 and CB2 receptors, it was determined that CB1 receptors are in high density in the central nervous system while CB2 receptors are found primarily in the immune system. The endogenous cannabinoid ligands, anandamide and 2-arachidonoylglycerol, were observed in the central nervous system and peripheral tissues. Endocannabinoids differ from other "classical" neurotransmitters because they do not appear to be stored in synaptic vesicles, and they act as retrograde messengers within the brain. The endogenous cannabinoid signaling system includes cannabinoid receptors, their endogenous ligands called endocannabinoids, and the proteins for their synthesis and inactivation. The cannabinoid system appears to act as a neuromodulatory system. During the past ten years, the endogenous cannabinoid system has been implicated in a variety of physiological functions including pain reduction, motor regulation, learning, memory, and reward. Because obesity and eating disorders are prevalent, scientists are working at the molecular level to study the mechanisms controlling body weight and regulation of food intake. Several of the neuropeptides present in hypothalamic nuclei contribute to energy balance and food intake regulation. Endogenous cannabinoid and cannobinoid receptors are found in the hypothalamus and are associated with the regulation of food intake. Although the mechanisms whereby cannabinoids influence food intake remain unclear, results suggest that the cannabinoid system will be an important target in future studies in obesity. Most research on cannabinoids has focused on their role in food intake regulation in mammalian species. It is important to determine the role of endocannabinoids in other species. The effect of intracerebroventricular injection of agonists and antagonists of both CB1 and CB2 receptors in 8 to 11 week-old male Single Comb White Leghorn and 3 to 6 weeks old male broilers was investigated. It was found that agonists of both the CB1 and CB2 receptor increased food intake significantly; however, the CB2 receptor agonist had a stronger and longer lasting effect. Antagonists of both receptors decreased food intake significantly. The CB1 receptor antagonist appeared to block both cannabinoid receptors in birds, whereas the CB2 receptor antagonist did not block both receptors. Previous studies have indicated that the CB2 receptor is found only outside the brain and spinal cord, and is involved with the immune system. From the present results, it appears that both cannabinoid receptors are present in the chicken brain. Furthermore, the CB2 receptor may also be localize in the chicken brain. There are also differences in cannabinoid system between Leghorn and broilers.
- Characterization of antioxidant activities of soybeans and assessment of their bioaccessibility after in vitro digestionChung, Hyun (Virginia Tech, 2009-11-05)Nine Virginia soybeans grown in a single location were compared for their antioxidant properties and isoflavone profiles. The extracts were evaluated for their total phenolic contents (TPC), Oxygen Radical Absorbance Capacity (ORAC), and DPPH™ radical scavenging activities. In order to evaluate efficient preparation methods for soybean antioxidants, three Virginia-grown soybeans were extracted using different extraction strategies. The extraction techniques included soxhlet extraction, conventional solvent extraction, and ultrasonic-assisted extraction (UAE) with 5 different common solvent systems including 50% and 80% aqueous acetone, 50 and 70% aqueous ethanol, and 80% aqueous methanol. The TPC in the soybean extracts and isoflavone compositions were significantly different among cultivars. Malonylgenistin was the major isoflavone in all soybean seeds, accounting for 75-83% of the total measured isoflavones. The V01-4937 variety had the highest total isoflavone and malonylgenistin contents, followed by V03-5794. The antioxidant activities of the soybean extracts were also significantly different. Overall, the V01-4937 soybean was the variety that stood out from the other tested Virginia soybeans because it had the highest TPC, ORAC value, and isoflavone contents as well as the second highest DPPH™ scavenging activity. Ultrasonic treatment improved the extraction of soybean phenolics by more than 50% compared to solvent alone. The UAE with 50% aqueous acetone was the most efficient for extraction of phenolic compounds in the soybean seeds. The conventional and UAE with 70% aqueous ethanol extracts had the highest ORAC values, while the soxhlet methanol extracts had the highest DPPH™ radical scavenging activities. Our results suggest that different extraction technologies have a remarkable effect on soybean antioxidant estimation and the UAE is more appropriate for soybean phenolic extraction because it is less time and solvent consuming than the conventional solvent and soxhlet extractions. The V01-4937 soybean with the highest TPC was evaluated for its antioxidant activity and isoflavone contents in an in vitro digestive system. After gastrointestinal digestion, soybean extracts contained higher TPC and ORAC values than cooked soybean (before digestion) but they were relatively low in DPPH™ radical scavenging capacity. The glucosides, daidzin, genistin, and malonylgenistin showed stability during simulated digestion with 83.3 %, 59.4 %, and 10.7 % recovery, respectively. Aglycones, including daidzein and genistein, were recovered at 37 % and 73.7 %, respectively, after in vitro digestion. In this study, daidzin was the most stable and bioaccessible isoflavone determined using the in vitro digestive system. Among the aglycones, genistein was more stable and bioaccessible than daidzein after digestion. In conclusion, soybean antioxidant activities were different among cultivars and efficient extraction for TPC was found using UAE with 50% aqueous acetone. Furthermore, antioxidant activities were stable during digestion and genistein, within aglycones tested, was the most stable and bioaccessible compound following in vitro digestion. This information may provide manufacturers or researchers information required to develop food or nutraceutical products processed for better bioaccessibility of soybean bioactive components.
- Chickens from lines artificially selected for juvenile low and high body weight differ in glucose homeostasis and pancreas physiologySumners, Lindsay Hart (Virginia Tech, 2015-01-30)Early pancreatectomy experiments performed in ducks and pigeons at the end of the 19th century revealed that avians, unlike mammals, do not display signs of diabetes. Relative to mammals, birds are considered hyperglycemic, displaying fasting blood glucose concentrations twice that of a normal human. While circulating levels of insulin are similar in avians and mammals, and structure and function of the insulin receptor are also conserved among vertebrate species, birds do not experience deleterious effects of chronic hyperglycemia as observed in mammals. Understanding avian glucose homeostasis, particularly in chickens, has both agricultural and biomedical implications. Improvement of feed efficiency and accelerated growth in poultry may come from a greater understanding of the physiological processes associated with glucose utilization in muscle and fat. The chicken has also recently been recognized as an attractive model for human diabetes, where there is a great need for preventative and therapeutic strategies. The link between type 2 diabetes and obesity, coupled with the inherent hyperglycemic nature of chickens, make chickens artificially selected for juvenile low (LWS) and high (HWS) body weight a favorable model for investigating glucose regulation and pancreas physiology. Oral glucose tolerance and insulin sensitivity tests revealed differences in threshold sensitivity to insulin and glucose clearance rate between the lines. Results from real-time PCR showed greater pancreatic mRNA expression of four glucose regulatory genes (preproinsulin, PPI; preproglucagon, PPG; glucose transporter 2, GLUT2; and pancreatic duodenal homeobox 1, Pdx1) in LWS, than HWS chickens. Histological analysis of pancreas revealed that HWS chickens have larger pancreatic islets, less pancreatic islet mass, and more pancreatic inflammation than LWS chickens, all of which presumably contribute to impaired glucose metabolism. In summary, results suggest that at selection age, there are differences in pancreas physiology that may explain the differences in glucose regulation between LWS and HWS. These data pave the way for future studies aimed at understanding the developmental regulation of endocrine pancreas function in chickens, as well as how aging affects homeostatic control of blood glucose in chickens.
- Chronic Dietary Supplementation of Branched-Chain Amino Acids Does Not Attenuate Muscle Torque Loss in a Mouse Model of Duchenne Muscular DystrophySperringer, Justin Edward (Virginia Tech, 2019-09-12)Duchenne Muscular Dystrophy (DMD) is an X-linked recessive, progressive muscle-wasting disease characterized by mutations in the dystrophin gene. Duchenne muscular dystrophy is the most common and most severe form of inherited muscle diseases, with an incidence of 1 in 3,500 male births1,2. Mutations in the dystrophin gene result in non-functional dystrophin or the complete absence of the protein dystrophin, resulting in necrosis and fibrosis in the muscle, loss of ambulation, cardiomyopathies, inadequate or failure of respiratory function, and decreased lifespan. Although there has been little research for effective nutritional strategies, dietary intervention may be effective as an adjuvant treatment. In this study, wild type (WT) and mdx animals were provided either a control or elevated branched chain amino acid (BCAA) diet nocturnally for 25 weeks to determine if the elevated BCAAs would attenuate muscle torque loss. Twenty-five weeks of chronic, elevated BCAA supplementation had no impact on muscle function measures. Interestingly, mdx and WT animals had the same torque responses in the low stimulation frequencies (1 Hz – 30 Hz) compared to higher stimulation frequencies. Tetanus was reached at a much lower stimulation frequency in mdx animals compared to WT animals (100 Hz vs +150 Hz). The mdx mouse consistently had more cage activity in the light cycle X- and Y-planes. Interestingly, animals on the BCAA diet increased X-, Y-, and Z-plane activity in the dark cycles at four weeks while animals on the control diet more Z-plane activity at 25 weeks, although not significant. All three BCAAs were elevated in the plasma at 25 weeks, although only Leu was significantly elevated. The BCAAs had no effect on. The diaphragm and skeletal muscle masses were larger in mdx animals, and WT animals had a significantly larger epididymal fat pad. The active state of BCKDC determined by phosphorylation of the E1α enzyme was greater in WT animals in white skeletal muscle, but not red skeletal muscle. Protein synthesis effectors of the mTORC1 signaling pathway and autophagy markers were similar among groups. Wild type animals had increased mTORC1 effectors and animals on the BCAA diet had decreased autophagy markers, although not significant. Although BCAAs did not affect muscle function, fibrosis, or protein synthesis effectors, this study illustrates the functionality of mdx muscles over time. It would be interesting to see how the different muscle fiber types are affected by DMD, noting the differences between the diaphragm, heart, red muscle, and white muscle fibrosis markers. Although there was no increase in mTORC1 effectors with an elevated BCAA diet, it would be interesting to determine muscle protein synthesis, myofibrillar protein synthesis, and total protein turnover in the mdx mouse with an elevated BCAA diet, although the dietary intervention started when mice arrived at 4 weeks of age, earlier intervention may be beneficial early in the disease process.
- Chronic stress and adipose tissue in the anorexic state: endocrine and epigenetic mechanismsXiao, Yang; Liu, Dongmin; Cline, Mark A.; Gilbert, Elizabeth R. (Taylor & Francis, 2020)Although adipose tissue metabolism in obesity has been widely studied, there is limited research on the anorexic state, where the endocrine system is disrupted by reduced adipose tissue mass and there are depot-specific changes in adipocyte type and function. Stress exposure at different stages of life can alter the balance between energy intake and expenditure and thereby contribute to the pathogenesis of anorexia nervosa. This review integrates information from human clinical trials to describe endocrine, genetic and epigenetic aspects of adipose tissue physiology in the anorexic condition. Changes in the hypothalamus-pituitary-thyroid, -adrenal, and -gonadal axes and their relationships to appetite regulation and adipocyte function are discussed. Because of the role of stress in triggering or magnifying anorexia, and the dynamic but also persistent nature of environmentally-induced epigenetic modifications, epigenetics is likely the link between stress and long-term changes in the endocrine system that disrupt homoeostatic food intake and adipose tissue metabolism. Herein, we focus on the adipocyte and changes in its function, including alterations reinforced by endocrine disturbance and dysfunctional adipokine regulation. This information is critical because of the poor understanding of anorexic pathophysiology, due to the lack of suitable research models, and the complexity of genetic and environmental interactions.
- Chronic stress, epigenetics, and adipose tissue metabolism in the obese stateXiao, Yang; Liu, Dongmin; Cline, Mark A.; Gilbert, Elizabeth R. (2020-10-19)In obesity, endocrine and metabolic perturbations, including those induced by chronic activation of the hypothalamus–pituitary–adrenal axis, are associated with the accumulation of adipose tissue and inflammation. Such changes are attributable to a combination of genetic and epigenetic factors that are influenced by the environment and exacerbated by chronic activation of the hypothalamus–pituitary–adrenal axis. Stress exposure at different life stages can alter adipose tissue metabolism directly through epigenetic modification or indirectly through the manipulation of hypothalamic appetite regulation, and thereby contribute to endocrine changes that further disrupt whole-body energy balance. This review synthesizes current knowledge, with an emphasis on human clinical trials, to describe metabolic changes in adipose tissue and associated endocrine, genetic and epigenetic changes in the obese state. In particular, we discuss epigenetic changes induced by stress exposure and their contribution to appetite and adipocyte dysfunction, which collectively promote the pathogenesis of obesity. Such knowledge is critical for providing future directions of metabolism research and targets for treating metabolic disorders.
- Colonic metabolism of dietary grape seed extract: Analytical method development, effect on tight-junction proteins, tissue accumulation, and pan-colonic pharmacokineticsGoodrich, Katheryn Marie (Virginia Tech, 2015-03-31)Procyanidins (PCs) have been extensively investigated for their potential health protective activities, but the prospective bioactivities are limited by their poor bioavailability. The majority of the ingested dose remains unabsorbed and reaches the colon where extensive microbial metabolism occurs. The objectives of these studies are to better understand the roles and activities of PCs in the lower gastrointestinal tract. First, a new high-throughput Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry method was developed to efficiently analyze PCs and an extensive profile of their microbial metabolites. This method is sufficiently sensitive and effective in simultaneously extracting and measuring native PCs and their microbial metabolites in biological samples. Furthermore, administration of grape seed extract increased the expression of gut junction protein occludin and reduced levels of fecal calprotectin, which suggests an improvement of gut barrier integrity and a potential modulation of endotoxemia. Additionally, chronic supplementation of the diet with flavanols did not increase colonic tissue accumulation of PCs or their microbial metabolites over a 12 week feeding study. This was the first long-term study of its kind, and the results indicate that we still do not fully understand the outcome of ingested flavanols in the colon during chronic exposure rather than acute doses. Lastly, new understanding of the microbial metabolism of PCs in the colon has been reached by studying the colon as 4 segments, rather than as a complete unit as previous studies have done. Data show that a gradient is established along the length of the colon for both PCs and their metabolites, with PCs reaching highest concentrations within 3 h after ingestion, while metabolites reach maximum concentrations anywhere form 3-18 h after ingestion. Moreover, data indicate the progressive, step-wise degradation of PCs into small metabolites throughout the length of the colon. Overall, there is greater understanding of the colonic metabolism of dietary PCs derived from GSE and cocoa, the accumulation of these compounds, and their effect on gut permeability. Future work will build off of these novel studies, and will continue to advance the understanding of the health benefits of dietary PCs.
- Conjugated Linoleic Acid in the treatment of murine autoimmune glomerulonephritisHammond, Sarah Elizabeth (Virginia Tech, 2015-10-15)Conjugated linoleic acid (CLA) has been shown to reduce inflammation via Peroxisome Proliferator-Activated Receptor (PPAR)-γ in inflammatory disorders such as Crohn's Disease and Inflammatory Bowel Disease. We sought to determine whether CLA isomers would reduce inflammation via PPAR-γ in cultured mesangial cells, and in murine models of anti-glomerular basement membrane (anti-GBM) glomerulonephritis and Systemic Lupus Erythematosus (SLE). SV40-transformed mouse mesangial cells (MES13) were cultured with pure CLA isomers (c9,t11 or t10,c12-CLA or a 50:50 mixture prior to immune stimulation with lipopolysaccharide and interferon-γ. Next, cultured mesangial cells were transfected with small interfering RNA (siRNA) targeting PPAR-γ and treated with CLA isomers prior to immune stimulation. ELISA, qPCR, Western blot, and Griess reaction were performed to measure cytokine production, mRNA expression, induced nitric oxide synthase (iNOS) and nitrite production, respectively. Next, myeloid-specific (LysM creR2+) PPAR-γ knockout mice were treated with CLA prior to the induction of anti-GBM glomerulonephritis and evaluated for disease. Finally, NZM2410/J mice (a natural model of SLE) were treated with c9,t11-CLA and evaluated for disease progression. Treatment with CLA reduced IL-6 production in cultured mesangial cells, but not in siRNA-treated mesangial cells, supporting a PPAR-γ-mediated mechanism. CLA treatment increased both Transforming Growth Factor (TGF-β) and Interleukin-1 Receptor Antagonist (IL-1RA) mRNA expression independent of PPAR--γ. While CLA treatment reduced nitrite production and iNOS production to some degree, this was an inconsistent finding. Conversely, in the induced anti-GBM mouse model, CLA treatment increased mesangial cell IL-6 mRNA expression, reduced TGF-β expression, and had no effect on IL-1RA. Moreover, NZM2410/J mice that were fed a c9,t11-CLA-supplemented diet had reduced survival times, increased renal inflammation and increased serum IgG2a relative to controls. Taken together, these studies indicate that the in vitro MES13 cell line does not translate to the in vivo mouse model of anti-GBM induced glomerulonephritis. Furthermore, while CLA may have beneficial effects in other mouse models, it worsens disease in NZM2410/J mice. Findings from these models should be interpreted with caution.
- Deletion of GPR30 Drives the Activation of Mitochondrial Uncoupling Respiration to Induce Adipose Thermogenesis in Female MiceLuo, Jing; Wang, Yao; Gilbert, Elizabeth R.; Liu, Dongmin (Frontiers, 2022-05-03)Thermogenic adipocytes possess a promising approach to combat obesity with its capability promoting energy metabolism. We previously discovered that deletion of GPR30 (GPRKO), a presumably membrane-associated estrogen receptor, protected female mice from developing obesity, glucose intolerance, and insulin resistance when challenged with a high-fat diet (HFD). In vivo, the metabolic phenotype of wild type (WT) and GPRKO female mice were measured weekly. Acute cold tolerance test was performed. Ex vivo, mitochondrial respiration of brown adipose tissue (BAT) was analyzed from diet-induced obese female mice of both genotypes. In vitro, stromal vascular fractions (SVF) were isolated for beige adipocyte differentiation to investigate the role of GPR30 in thermogenic adipocyte. Deletion of GPR30 protects female mice from hypothermia and the mitochondria in BAT are highly energetic in GPRKO animals while the WT mitochondria remain in a relatively quiescent stage. Consistently, GPR30 deficiency enhances beige adipocyte differentiation in white adipose tissue (WAT) and activates the thermogenic browning of subcutaneous WAT due to up-regulation of UCP-1, which thereby protects female mice from HFD-induced obesity. GPR30 is a negative regulator of thermogenesis, which at least partially contributes to the reduced adiposity in the GPRKO female mice. Our findings provide insight into the mechanism by which GPR30 regulates fat metabolism and adiposity in female mice exposed to excess calories, which may be instrumental in the development of new therapeutic strategies for obesity.
- Dietary Anti-Aging Polyphenols and Potential MechanismsLuo, Jing; Si, Hongwei; Jia, Zhenquan; Liu, Dongmin (MDPI, 2021-02-13)For years, the consumption of a diet rich in fruits and vegetables has been considered healthy, increasing longevity, and decreasing morbidities. With the assistance of basic research investigating the potential mechanisms, it has become clear that the beneficial effects of plant-based foods are mainly due to the large amount of bioactive phenolic compounds contained. Indeed, substantial dietary intervention studies in humans have supported that the supplementation of polyphenols have various health-promoting effects, especially in the elderly population. In vitro examinations on the anti-aging mechanisms of polyphenols have been widely performed, using different types of natural and synthetic phenolic compounds. The aim of this review is to critically evaluate the experimental evidence demonstrating the beneficial effects of polyphenols on aging-related diseases. We highlight the potential anti-aging mechanisms of polyphenols, including antioxidant signaling, preventing cellular senescence, targeting microRNA, influencing NO bioavailability, and promoting mitochondrial function. While the trends on utilizing polyphenols in preventing aging-related disorders are getting growing attention, we suggest the exploration of the beneficial effects of the combination of multiple polyphenols or polyphenol-rich foods, as this would be more physiologically relevant to daily life.
- Dietary epicatechin improves survival and delays skeletal muscle degeneration in aged miceSi, Hongwei; Wang, Xiaoyong; Zhang, Longyun; Parnell, Laurence D.; Admed, Bulbul; LeRoith, Tanya; Ansah, Twum-Ampofo; Zhang, Lijuan; Li, Jianwei; Ordovas, Jose M.; Si, Hongzong; Liu, Dongmin; Lai, Chao-Qiang (2019-01)We recently reported that epicatechin, a bioactive compound that occurs naturally in various common foods, promoted general health and survival of obese diabetic mice. It remains to be determined whether epicatechin extends health span and delays the process of aging. In the present study, epicatechin or its analogue epigallocatechin gallate (EGCG) (0.25% w/v in drinking water) was administered to 20-mo-old male C57BL mice fed a standard chow. The goal was to determine the antiaging effect. The results showed that supplementation with epicatechin for 37 wk strikingly increased the survival rate from 39 to 69%, whereas EGCG had no significant effect. Consistently, epicatechin improved physical activity, delayed degeneration of skeletal muscle (quadriceps), and shifted the profiles of the serum metabolites and skeletal muscle general mRNA expressions in aging mice toward the profiles observed in young mice. In particular, we found that dietary epicatechin significantly reversed age-altered mRNA and protein expressions of extracellular matrix and peroxisome proliferator-activated receptor pathways in skeletal muscle, and reversed the age-induced declines of the nicotinate and nicotinamide pathway both in serum and skeletal muscle. The present study provides evidence that epicatechin supplementation can exert an antiaging effect, including an increase in survival, an attenuation of the aging-related deterioration of skeletal muscles, and a protection against the aging-related decline in nicotinate and nicotinamide metabolism.Si, H., Wang, X., Zhang, L., Parnell, L. D., Admed, B., LeRoith, T., Ansah, T.-A., Zhang, L., Li, J., Ordovas, J. M., Si, H., Liu, D., Lai, C.-Q. Dietary epicatechin improves survival and delays skeletal muscle degeneration in aged mice.
- Dietary Flavonoids as Modulators of Lipid Metabolism in PoultryTan, Zhendong; Halter, Bailey; Liu, Dongmin; Gilbert, Elizabeth R.; Cline, Mark A. (Frontiers, 2022-04-25)Flavonoids, naturally-occurring compounds with multiple phenolic structures, are the most widely distributed phytochemicals in the plant kingdom, and are mainly found in vegetables, fruits, grains, roots, herbs, and tea and red wine products. Flavonoids have health-promoting effects and are indispensable compounds in nutritional and pharmaceutical (i.e., nutraceutical) applications. Among the demonstrated bioactive effects of flavonoids are anti-oxidant, anti-inflammatory, and anti-microbial in a range of research models. Through dietary formulation strategies, numerous flavonoids provide the ability to support bird health while improving the nutritional quality of poultry meat and eggs by changing the profile of fatty acids and reducing cholesterol content. A number of such compounds have been shown to inhibit adipogenesis, and promote lipolysis and apoptosis in adipose tissue cells, and thereby have the potential to affect fat accretion in poultry at various ages and stages of production. Antioxidant and anti-inflammatory properties contribute to animal health by preventing free radical damage in tissues and ameliorating inflammation in adipose tissue, which are concerns in broiler breeders and laying hens. In this review, we summarize the progress in understanding the effects of dietary flavonoids on lipid metabolism and fat deposition in poultry, and discuss the associated physiological mechanisms.
- Dietary Flavonoids in the Prevention of T2D: An OverviewAlkhalidy, Hana; Wang, Yao; Liu, Dongmin (MDPI, 2018-03-31)Type 2 diabetes (T2D) is a progressive metabolic disease that is increasing in prevalence globally. It is well established that insulin resistance (IR) and a progressive decline in functional β-cell mass are hallmarks of developing T2D. Obesity is a leading pathogenic factor for developing IR. Constant IR will progress to T2D when β-cells are unable to secret adequate amounts of insulin to compensate for decreased insulin sensitivity. Recently, a considerable amount of research has been devoted to identifying naturally occurring anti-diabetic compounds that are abundant in certain types of foods. Flavonoids are a group of polyphenols that have drawn great interest for their various health benefits. Results from many clinical and animal studies demonstrate that dietary intake of flavonoids might be helpful in preventing T2D, although cellular and molecular mechanisms underlying these effects are still not completely understood. This review discusses our current understanding of the pathophysiology of T2D and highlights the potential anti-diabetic effects of flavonoids and mechanisms of their actions.
- Dietary Supplementation of Baicalein Affects Gene Expression in Broiler Adipose Tissue During the First Week Post-hatchXiao, Yang; Halter, Bailey; Boyer, Casey; Cline, Mark A.; Liu, Dongmin; Gilbert, Elizabeth R. (Frontiers, 2021-06-25)Dietary supplementation of baicalein, a flavonoid, has anti-obesity effects in mammals and broiler chickens. The aim of this study was to determine the effect of dietary baicalein supplementation on broiler growth and adipose tissue and breast muscle deposition. Fifty Hubbard Cobb-500 day-of-hatch broiler chicks were assigned to a control starter diet or control diet supplemented with 125, 250, or 500 mg/kg baicalein and diets were fed for the first 6 days post-hatch. Body weight, average daily body weight gain, and average daily food intake were all reduced by 500 mg/kg baicalein. Breast muscle and subcutaneous and abdominal fat weights were also reduced in chicks that consumed the baicalein-supplemented diets. mRNAs for genes encoding factors involved in adipogenesis and fat storage, 1-acylglycerol-3-phosphate-O-acyltransferase 2, CCAAT/enhancer-binding protein b, perilipin-1, and sterol regulatory element-binding transcription factor 1, were more highly expressed in the adipose tissue of broilers supplemented with baicalein than the controls, independent of depot. Diacylglycerol acyltransferase and peroxisome proliferator-activated receptor gamma mRNAs, involved in triacylglycerol synthesis and adipogenesis, respectively, were greater in subcutaneous than abdominal fat, which may contribute to differences in expansion rates of these depots. Results demonstrate effects of dietary supplementation of baicalein on growth performance in broilers during the early post-hatch stage and molecular effects in major adipose tissue depots. The mild reduction in food intake coupled to slowed rate of breast muscle and adipose tissue accumulation may serve as a strategy to modulate broiler growth and body composition to prevent metabolic and skeletal disorders later in life.
- Dietary Supplementation of Chinese Ginseng Prevents Obesity and Metabolic Syndrome in High-Fat Diet-Fed MiceLi, Xiaoxiao; Luo, Jing; Babu, Pon Velayutham Anandh; Zhang, Wei; Gilbert, Elizabeth R.; Cline, Mark A.; McMillan, Ryan P.; Hulver, Matthew W.; Alkhalidy, Hana; Zhen, Wei; Zhang, Haiyan; Liu, Dongmin (Mary Ann Liebert, 2014-12-01)Obesity and diabetes are growing health problems worldwide. In this study, dietary provision of Chinese ginseng (0.5 g/kg diet) prevented body weight gain in high-fat (HF) diet-fed mice. Dietary ginseng supplementation reduced body fat mass gain, improved glucose tolerance and whole body insulin sensitivity, and prevented hypertension in HF diet-induced obese mice. Ginseng consumption led to reduced concentrations of plasma insulin and leptin, but had no effect on plasma adiponectin levels in HF diet-fed mice. Body temperature was higher in mice fed the ginseng-supplemented diet but energy expenditure, respiration rate, and locomotive activity were not significantly altered. Dietary intake of ginseng increased fatty acid oxidation in the liver but not in skeletal muscle. Expression of several transcription factors associated with adipogenesis (C/EBP alpha and PPAR gamma) were decreased in the adipose tissue of HF diet-fed mice, effects that were mitigated in mice that consumed the HF diet supplemented with ginseng. Abundance of fatty acid synthase (FASN) mRNA was greater in the adipose tissue of mice that consumed the ginseng-supplemented HF diet as compared with control or un-supplemented HF diet-fed mice. Ginseng treatment had no effect on the expression of genes involved in the regulation of food intake in the hypothalamus. These data suggest that Chinese ginseng can potently prevent the development of obesity and insulin resistance in HF diet-fed mice.
- Does GPER Really Function as a G Protein-Coupled Estrogen Receptor in vivo?Luo, Jing; Liu, Dongmin (2020-03-31)Estrogen can elicit pleiotropic cellular responses via a diversity of estrogen receptors (ERs)-mediated genomic and rapid non-genomic mechanisms. Unlike the genomic responses, where the classical nuclear ER alpha and ER beta act as transcriptional factors following estrogen binding to regulate gene transcription in estrogen target tissues, the non-genomic cellular responses to estrogen are believed to start at the plasma membrane, leading to rapid activation of second messengers-triggered cytoplasmic signal transduction cascades. The recently acknowledged ER, GPR30 or GPER, was discovered in human breast cancer cells two decades ago and subsequently in many other cells. Since its discovery, it has been claimed that estrogen, ER antagonist fulvestrant, as well as some estrogenic compounds can directly bind to GPER, and therefore initiate the non-genomic cellular responses. Various recently developed genetic tools as well as chemical ligands greatly facilitated research aimed at determining the physiological roles of GPER in different tissues. However, there is still lack of evidence that GPER plays a significant role in mediating endogenous estrogen action in vivo. This review summarizes current knowledge about GPER, including its tissue expression and cellular localization, with emphasis on the research findings elucidating its role in health and disease. Understanding the role of GPER in estrogen signaling will provide opportunities for the development of new therapeutic strategies to strengthen the benefits of estrogen while limiting the potential side effects.